Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 67(12): 10005-10011, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38511243

RESUMO

There is an urgent requirement to acquire a comprehensive comprehension of novel therapeutic targets for prostate cancer to facilitate the development of medications with innovative mechanisms. In this study, we identified gambogic acid (GBA) as a specific pyroptosis inducer in prostatic cancer cells. By using a thermal proteome profiling (TPP) strategy, we revealed that GBA induces pyroptosis by directly targeting the canopy FGF signaling regulator (CNPY3), which was previously considered "undruggable". Moreover, through the utilization of the APEX2-based proximity labeling method, we found that GBA recruited delactatease SIRT1, resulting in the elimination of lysine lactylation (Kla) on CNPY3. Of note, SIRT1-mediated delactylation influenced the cellular localization of CNPY3 to promote lysosome rupture for triggering pyroptosis. Taken together, our study identified CNPY3 as a distinctive cellular target for pyroptosis induction and its potential application in prostate cancer therapy.


Assuntos
Neoplasias da Próstata , Proteoma , Piroptose , Xantonas , Masculino , Humanos , Xantonas/farmacologia , Xantonas/química , Neoplasias da Próstata/patologia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Piroptose/efeitos dos fármacos , Proteoma/metabolismo , Proteoma/efeitos dos fármacos , Linhagem Celular Tumoral , Sirtuína 1/metabolismo
2.
AMB Express ; 13(1): 115, 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37848594

RESUMO

Antibiotic-resistant bacterial strains and the consequent surge in infections caused by them have become major public health concerns. Silver nanoparticles (AgNPs) exhibit antibacterial properties and have wide applications in biomedical sciences. In this study, AgNPs were synthesized in the presence of antibiotics: Ceftazidime (Cft), Cefotaxime (Cef), Ceftriaxone (Cfx), and Cefepime (Cpm), along with the extract of Mentha longifolia. Mentha longifolia-based AgNPs were kept as the control for all experiments. The associated metabolites, structural properties, surface charges, and antibacterial activity of the AgNPs were also evaluated. Overall, a blue-shift of SPR peaks was observed for control AgNPs (λmax = 421 nm, 422 nm, 426 nm, and 406 nm for Cft-AgNPs, Cef-AgNPs, Cfx-AgNPs, and Cpm-AgNPs, respectively), compared to the control (λmax = 438 nm). Fourier-transform infrared spectroscopy showed that antibiotic-based AgNPs had distinct peaks that corresponded to the respective antibiotics, which were not observed in the control. XRD analysis showed that there were observed changes in crystallinity in antibiotic-based AgNPs compared to the control. TEM images revealed that all samples had spherical nanoparticles with different sizes and distributions compared to the control. The Zeta potential for extract-based AgNPs was - 33.6 mV, compared to -19.6 mV for Cft-AgNPs, -2 mV for Cef-AgNPs, -21.1 mV for Cfx-AgNPs, and - 24.2 mV for Cpm-AgNPs. The increase in the PDI value for antibiotic-based AgNPs also showed a highly polydisperse distribution. However, the antibiotic-AgNPs conjugates showed significantly higher activity against pathogenic bacteria. The addition of antibiotics to AgNPs brought significant changes in structural properties and antibacterial activities.

3.
ACS Appl Mater Interfaces ; 15(37): 43321-43331, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37668507

RESUMO

The emergence of antimicrobial resistance is an alarming global health concern and has stimulated the development of novel functional nanomaterials to combat multi-drug-resistant (MDR) bacteria. In this work, we demonstrate for the first time the synthesis and application of surfactin-coated silver nanoparticles as an efficient antibacterial and antibiofilm agent against the drug-resistant bacteria Pseudomonas aeruginosa for safe dermal applications. Our in vivo studies showed no significant superficial dermal irritation, edema, and erythema, while microscopic analysis revealed that surfactin-coated silver nanoparticles caused no pathological alterations at the applied concentrations. These results support the potential use of surfactin-coated silver nanoparticles against drug-resistant bacterial biofilm infections and in skin wound dressing applications.


Assuntos
Nanopartículas Metálicas , Pseudomonas aeruginosa , Prata/farmacologia , Antibacterianos/farmacologia , Biofilmes
4.
Nat Commun ; 14(1): 1130, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36854666

RESUMO

SARS-CoV-2 variants have emerged with elevated transmission and a higher risk of infection for vaccinated individuals. We demonstrate that a recombinant prefusion-stabilized spike (rS) protein vaccine based on Beta/B.1.351 (rS-Beta) produces a robust anamnestic response in baboons against SARS-CoV-2 variants when given as a booster one year after immunization with NVX-CoV2373. Additionally, rS-Beta is highly immunogenic in mice and produces neutralizing antibodies against WA1/2020, Beta/B.1.351, and Omicron/BA.1. Mice vaccinated with two doses of Novavax prototype NVX-CoV2373 (rS-WU1) or rS-Beta alone, in combination, or heterologous prime-boost, are protected from challenge. Virus titer is undetectable in lungs in all vaccinated mice, and Th1-skewed cellular responses are observed. We tested sera from a panel of variant spike protein vaccines and find broad neutralization and inhibition of spike:ACE2 binding from the rS-Beta and rS-Delta vaccines against a variety of variants including Omicron. This study demonstrates that rS-Beta vaccine alone or in combination with rS-WU1 induces antibody-and cell-mediated responses that are protective against challenge with SARS-CoV-2 variants and offers broader neutralizing capacity than a rS-WU1 prime/boost regimen alone. Together, these nonhuman primate and murine data suggest a Beta variant booster dose could elicit a broad immune response to fight new and future SARS-CoV-2 variants.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Nanopartículas , Animais , Humanos , Camundongos , Anticorpos Neutralizantes , COVID-19/prevenção & controle , Papio , SARS-CoV-2/genética , Vacinas/química , Vacinas/imunologia , Vacinas contra COVID-19/química , Vacinas contra COVID-19/imunologia
5.
3 Biotech ; 12(10): 273, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36101547

RESUMO

The COVID-19 outbreak has brought the world, at least, to one consensus that cleanliness is unavoidable under all circumstances. Hands are the main body part to interact with the environment and thus are prone to receive, initiate and propagate the chain of infection. Hand hygiene has, therefore, been most emphasized by experts to interrupt the spread of infection. Various harsh chemicals like synthetic surfactants and alcoholic preparations have been in practice to eradicate and disinfect the germs. This choice may be unsafe and cause a subsequent chain of adversities. Thereby, biosurfactants have been proposed as sustainable, non-toxic and safe surface cleaners cum disinfectants under a wide range of physiological and environmental conditions. The amphiphilic micellar behavior of biosurfactants makes them promising candidates as hygienic surface cleaners and therapeutic carriers. We overview the possibilities of using biosurfactants in different ways against microbial pathogens, in general, and the SARS COV-2, in specific.

6.
Curr Top Med Chem ; 22(13): 1046-1067, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34961445

RESUMO

The rapid emergence of multidrug-resistant bacterial strains highlights the need for the development of new antimicrobial compounds/materials to address associated healthcare challenges. Meanwhile, the adverse side effects of conventional antibiotics on human health urge the development of new natural product-based antimicrobials to minimize the side effects. In this respect, we concisely review the recent scientific contributions to develop natural product-based nano-antibiotics. The focus of the review is on the use of flavonoids, peptides, and cationic biopolymer functionalized metal/metal oxide nanoparticles as efficient tools to hit the MDR bacterial strains. It summarizes the most recent aspects of the functionalized nanoparticles against various pathogenic bacterial strains for their minimal inhibitory concentrations and mechanism of action at the cellular and molecular levels. In the end, the future perspectives to materialize the in vivo applications of nano-antimicrobials are suggested based on the available research.


Assuntos
Anti-Infecciosos , Produtos Biológicos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Anti-Infecciosos/farmacologia , Bactérias , Farmacorresistência Bacteriana Múltipla , Humanos , Testes de Sensibilidade Microbiana
7.
J Community Psychol ; 50(2): 742-759, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34291825

RESUMO

PURPOSE: This explanatory research aims to describe the factors that impact YouTube ad intrusiveness, value, and avoidance in light of psychological reactance theory. RESEARCH DESIGN: The research has a causal-predictive design. It describes the relationship between the construct with an underpinning theory. Data from a sample of 294 respondents were analyzed using partial least square structural equation modeling to test within sample explanatory power and out-of-sample prediction power. FINDINGS: The results show that informativeness does not significantly impact intrusiveness and ad avoidance. Entertainment has a negative direct and mediated impact on ad avoidance. Moreover, irritation was found to moderate the impact of informativeness on intrusiveness negatively. Importance-Performance Map Analysis revealed that entertainment lacks in performance despite being an essential factor. Besides explanatory power, the model has a moderate out-of-sample predictive relevance power. PRACTICAL IMPLICATIONS: The relative importance of the entertainment and interactive impact of irritation with informativeness is established for the first time in this study. The new finding is a significant contribution to theory while leading to practical implications for the industry.

8.
Virus Res ; 296: 198343, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33607183

RESUMO

Flaviviruses are the fastest spreading arthropod-borne viruses that cause severe symptoms such as hepatitis, hemorrhagic fever, encephalitis, and congenital deformities. Nearly 40 % of the entire human population is at risk of flavivirus epidemics. Yet, effective vaccination is restricted only to a few flaviviruses such as yellow fever and Japanese encephalitis viruses, and most recently for select cases of dengue virus infections. Despite the global spread of dengue virus, and emergence of new threats such as Zika virus and a new genotype of Japanese encephalitis virus, insights into flavivirus targets for potentially broad-spectrum vaccination are limited. In this review article, we highlight biochemical and structural differences in flavivirus proteins critical for virus assembly and host interactions. A comparative sequence analysis of pH-responsive properties of viral structural proteins identifies trends in conservation of complementary acidic-basic character between interacting viral structural proteins. This is highly relevant to the understanding of pH-sensitive differences in virus assembly in organelles such as neutral ER and acidic Golgi. Surface residues in viral interfaces identified by structural approaches are shown to demonstrate partial conservation, further reinforcing virus-specificity in assembly and interactions with host proteins. A comparative analysis of epitope conservation in emerging flaviviruses identifies therapeutic antibody candidates that have potential as broad spectrum anti-virals, thus providing a path towards development of vaccines.


Assuntos
Infecções por Flavivirus , Flavivirus , Febre Amarela , Infecção por Zika virus , Zika virus , Flavivirus/genética , Humanos , Proteínas Estruturais Virais , Febre Amarela/prevenção & controle , Zika virus/genética
9.
Photodiagnosis Photodyn Ther ; 33: 102152, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33348077

RESUMO

BACKGROUND: Raman spectroscopy is a promising technique to analyze the body fluids for the purpose of non-invasive disease diagnosis. OBJECTIVES: To develop a surface-enhanced Raman spectroscopy (SERS) based method for qualitative and quantitative analysis of HCV from blood samples. METHODS: SERS was employed to characterize the Hepatitis C viral RNA extracted from different blood samples of hepatitis C virus (HCV) infected patients with predetermined viral loads in comparison with total RNA of healthy individuals. The SERS measurements were performed on 27 extracted RNA samples including low viral loads, medium viral loads, high viral loads and healthy/negative viral load samples. For this purpose, silver nanoparticles (Ag NPs) were used as SERS substrates. Furthermore, multivariate data analysis technique, Principal Component Analysis (PCA) and Partial Least Square Regression (PLSR) were also performed on SERS spectral data. RESULTS: The SERS spectral features due to biochemical changes in the extracted RNA samples associated with the increasing viral loads were established which could be employed for HCV diagnostic purpose. PCA was found helpful for the differentiation between Raman spectral data of RNA extracted from hepatitis infected and healthy blood samples. PLSR model is established for the determination of viral loads in HCV positive RNA samples with 99 % accuracy. CONCLUSION: SERS can be employed for qualitative and quantitative analysis of HCV from blood samples.


Assuntos
Hepatite C , Nanopartículas Metálicas , Fotoquimioterapia , Hepacivirus/genética , Hepatite C/diagnóstico , Humanos , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes , RNA , Prata , Análise Espectral Raman , Carga Viral
10.
J Bone Miner Res ; 36(3): 531-545, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33125761

RESUMO

ClC-7 is a chloride-proton antiporter of the CLC protein family. In complex with its accessory protein Ostm-1, ClC-7 localizes to lysosomes and to the osteoclasts' ruffled border, where it plays a critical role in acidifying the resorption lacuna during bone resorption. Gene inactivation in mice causes severe osteopetrosis, neurodegeneration, and lysosomal storage disease. Mutations in the human CLCN7 gene are associated with diverse forms of osteopetrosis. The functional evaluation of ClC-7 variants might be informative with respect to their pathogenicity, but the cellular localization of the protein hampers this analysis. Here we investigated the functional effects of 13 CLCN7 mutations identified in 13 new patients with severe or mild osteopetrosis and a known ADO2 mutation. We mapped the mutated amino acid residues in the homology model of ClC-7 protein, assessed the lysosomal colocalization of ClC-7 mutants and Ostm1 through confocal microscopy, and performed patch-clamp recordings on plasma-membrane-targeted mutant ClC-7. Finally, we analyzed these results together with the patients' clinical features and suggested a correlation between the lack of ClC-7/Ostm1 in lysosomes and severe neurodegeneration. © 2020 American Society for Bone and Mineral Research (ASBMR).


Assuntos
Reabsorção Óssea , Osteopetrose , Animais , Canais de Cloreto/genética , Humanos , Lisossomos , Camundongos , Mutação/genética , Osteoclastos , Osteopetrose/genética
11.
Artigo em Inglês | MEDLINE | ID: mdl-32899902

RESUMO

BACKGROUND: Chronic obstructive pulmonary disease (COPD) is a major cause of morbidity and mortality worldwide. Hyperinflation of the lungs leads to a remodeling of the inspiratory muscles that causes postural deformities and more labored breathing. Postural changes include elevated, protracted, or abducted scapulae with medially rotated humerus, and kyphosis that leads to further tightening of respiratory muscles. As the severity of the disease progresses, use of the upper limbs for functional tasks becomes difficult due to muscle stiffness. There are various studies that suggest different rehabilitation programs for COPD patients; however, to the best of our knowledge none recommends passive stretching techniques. The aim of this study was to assess the effect of respiratory muscle passive stretching on chest expansion and 6-min walk distance (6MWD) in patients with moderate to severe COPD. METHODS: Thirty patients were divided into two groups, experimental (n = 15) and control (n = 15). The experimental group received a hot pack followed by stretching of the respiratory muscles and relaxed passive movements of the shoulder joints. The control group received a hot pack followed by relaxed passive movements of the shoulder joints. RESULTS: In the control group, there was no difference in chest expansion at the levels of both the axilla and the xiphisternum or in 6MWD between baseline and post treatment (p > 0.05). In the experimental group, chest expansion at the level of the axilla (p < 0.05) and 6MWD (p < 0.001) were significantly higher post treatment, while there was no difference in chest expansion at the level of the xiphisternum (p > 0.05). A comparison between control and experimental groups showed that chest expansion at the level of the axilla (p < 0.05) and 6MWD (p < 0.01) were significantly higher in the experimental group, while there was no difference in chest expansion at the level of the xiphisternum (p > 0.05). CONCLUSIONS: Although COPD is an irreversible disease, results of this study indicate that passive stretching of respiratory muscles can clinically improve the condition of such patients, especially in terms of chest expansion and 6MWD. Given the good effects of muscle stretching and the fact that such an exercise is harmless, clinicians and physiotherapists should consider including passive stretching of respiratory muscles in the rehabilitation plan of COPD patients.


Assuntos
Pulmão/fisiopatologia , Exercícios de Alongamento Muscular , Doença Pulmonar Obstrutiva Crônica/terapia , Músculos Respiratórios/fisiopatologia , Adulto , Tolerância ao Exercício , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Músculos Respiratórios/fisiologia , Resultado do Tratamento
12.
J Nanosci Nanotechnol ; 20(12): 7618-7628, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32711634

RESUMO

The emergence of bacterial resistance to currently available antibiotics emphasized the urgent need for new antibacterial agents. Nanotechnology-based approaches are substantially contributing to the development of effective and better-formulated antibiotics. Here, we report the synthesis of stable manganese oxide nanostructures (MnO NS) by a facile, one-step, microwave-assisted method. Asprepared MnO NS were thoroughly characterized by atomic force microscopy (AFM), field emission scanning electron microscopy (FESEM), dynamic light scattering (DLS), UV-Visible spectroscopy and X-ray powder diffraction (XRD). UV-Visible spectra give a sharp absorption peak at a maximum wavelength of 430 nm showed surface plasmon resonance (SPR). X-ray diffraction (XRD) profile demonstrated pure phase and crystalline nature of nanostructures. Morphological investigations by a scanning electron microscope showed good dispersity with spherical particles possessing a size range between 10-100 nm. Atomic force microscope data exhibited that the average size of MnO NS can be controlled between 25 nm to 150 nm by a three-fold increment in the amount of stabilizer (o-phenylenediamine). Antimicrobial activity of MnO NS on both gram-positive (Bacillus subtilis) and gram-negative (Escherichia coli) bacterial strains showed that prepared nanostructures were effective against microorganisms. Further, this antibacterial activity was found to be dependent on nanoparticles (NPs) size and bacterial species. These were more effective against Bacillus subtilis (B. subtilis) as compared to Escherichia coli (E. coli). Considering the results together, this study paves the way for the formulation of similar nanostructures as effective antibiotics to kill other pathogens by a more biocompatible platform. This is the first report to synthesize the MnO NS by green approach and its antibacterial application.


Assuntos
Nanopartículas Metálicas , Nanoestruturas , Antibacterianos/farmacologia , Escherichia coli , Compostos de Manganês , Testes de Sensibilidade Microbiana , Óxidos , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
13.
Chemistry ; 26(49): 11209-11219, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32227539

RESUMO

The use of water splitting modules is highly desired for the sustainable production of H2 as a future energy carrier. However, the sluggish kinetics and demand of high anodic potential are the bottlenecks for half-the cell oxygen evolution reaction (OER), which severely hamper the overall conversion efficiency. Although transition metal oxides based electrocatalysts have been envisioned as cost-effective and potential contenders for this quest, nevertheless, their low conductivity, instability, and limited number of active sites are among the common impediments that need to be addressed to eventually enhance their inherent catalytic potential for enhanced OER activity. Herein, the controlled assembly of transition metal oxides, that is, Cu@CuOx nanoclusters (NCs, ≈2 nm) and Co@CoOx beaded nanoclusters (BNCs, ≈2 nm), on thiol-functionalized graphene oxide (G-SH) nanosheets is reported to form novel and highly efficient electrocatalysts for OER. The thiol (-SH) functionality was incorporated by selective epoxidation on the surface of graphene oxide (GO) to achieve chemically exfoliated nanosheets to enhance its conductivity and trapping ability for metal oxides in nanoscale dimensions (≈2 nm). During the electrocatalytic reaction, overpotentials of 290 mV and 310 mV are required to achieve a current density of 10 mA cm-2 for BNCs and NCs, respectively, and the catalysts exhibit tremendous long-term stability (≈50 h) in purified alkaline medium (1 m KOH) with no dissolution in the electrolyte. Moreover, the smaller Tafel slopes (54 mV/dec for BNCs and 66 mV/dec for NCs), and a Faradic efficiency of approximately 96 % indicate not only the selectivity but also the tailored heterogeneous electrons transfer (HET) rate, which is required for fast electrode kinetics. It is anticipated that such ultrasmall metal oxide nanoclusters and their controlled assembly on a conducting surface (G-SH) may offer high electrochemical accessibility and a plethora of active sites owing to the drastic decrease in dimensions and thus can synergistically ameliorate the challenging OER process.

14.
Nano Sel ; 1(6): 612-621, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34485978

RESUMO

The current pandemic of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has challenged healthcare structures across the globe. Although a few therapies are approved by FDA, the search for better treatment options is continuously on rise. Clinical management includes infection prevention and supportive care such as supplemental oxygen and mechanical ventilatory support. Given the urgent nature of the pandemic and the number of companies and researchers developing COVID-19 related therapies, FDA has created an emergency program to move potential treatments with already approved drugs to patients as quickly as possible in parallel to the development of new drugs that must first pass the clinical trials. In this manuscript, we have reviewed the available literature on the use of sequence-specific degradation of viral genome using short-interfering RNA (siRNA) suggesting it as a possible treatment against SARS-CoV-2. Delivery of siRNA can be promoted by the use of FDA approved lipids, polymers or lipid-polymer hybrids. These nanoparticulate systems can be engineered to exhibit increased targetability and formulated as inhalable aerosols.

15.
J Nanosci Nanotechnol ; 20(4): 2130-2137, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31492221

RESUMO

It is necessary to study the possible interactions among various chemical surfaces and analytes before applying them to biological systems. We report the synthesis of carbon nanotubes-iron oxide (SPIONs-CNT) nanocomposite material by using lecithin stabilized superparamagnetic iron oxide nanoparticles (SPIONs) obtained by facile hydrothermal technique. Various characterizations of the obtained nanocomposite were carried out and electrochemical studies were performed further to study the interaction capabilities of the nanocomposite with anti-TB drug Rifampicin. Obtained results by cyclic voltammetric studies of SPIONs-CNT nanocomposite with limit of detection (LOD) of 1.178 µM showed the enhanced electrochemical sensitivity and selectivity of anti-tuberculosis (anti-TB) drug Rifampicin (RIF).


Assuntos
Grafite , Nanocompostos , Nanotubos de Carbono , Antituberculosos , Técnicas Eletroquímicas , Nanopartículas Magnéticas de Óxido de Ferro , Rifampina
16.
J Pak Med Assoc ; 69(9): 1390-1393, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31511733

RESUMO

Chromoblastomycosis is a chronic fungal infection of the subcutaneous tissue. The infection usually results from a traumatic injury and inoculation of the microorganism by a specific group of dematiaceous fungi, resulting in the formation of verrucous plaques. The fungi produce sclerotic or medlar bodies (also called muriform bodies or sclerotic cells) seen on direct microscopic examination of skin smears. The disease is often found in adults due to trauma. We report a case of chromoblastomycosis in a 12-year-old child in whom the infection started when he was only 4 years old with secondary involvement of bones, cartilage, tongue and palatine tonsils. The child was not immunosuppressed.


Assuntos
Doenças Ósseas Infecciosas/diagnóstico por imagem , Cromoblastomicose/diagnóstico , Infecções Fúngicas Invasivas/diagnóstico , Infecções Estafilocócicas/diagnóstico , Antibacterianos/uso terapêutico , Doenças Ósseas Infecciosas/tratamento farmacológico , Carbaril/uso terapêutico , Criança , Cromoblastomicose/diagnóstico por imagem , Cromoblastomicose/tratamento farmacológico , Articulações dos Dedos/diagnóstico por imagem , Humanos , Infecções Fúngicas Invasivas/diagnóstico por imagem , Infecções Fúngicas Invasivas/tratamento farmacológico , Linfadenopatia/diagnóstico , Masculino , Articulação Metatarsofalângica/diagnóstico por imagem , Staphylococcus aureus Resistente à Meticilina , Tonsila Palatina , Doenças Faríngeas/diagnóstico , Doenças Faríngeas/tratamento farmacológico , Infecções Estafilocócicas/tratamento farmacológico
17.
J Pak Med Assoc ; 69(8): 1216-1218, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31431784

RESUMO

Peripartum cardiomyopathy (PPCM) is a condition of unknown etiology that presents as heart failure due to left ventricular systolic dysfunction in the last of month of pregnancy and up to six months after giving birth. PPCM predisposes towards thrombo-embolism and an acute limb ischaemia can be a manifestation of this disease. We present a case of a 23-year-old lady presenting an acute lower limb ischaemia four months post-partum. Doppler ultrasound showed bilateral femoral emboli and cardiac ECHO showed a 24% ejection fraction. Amputation was performed on both limbs, below her right knee and above her left knee. The patient was started on heart failure medication and her symptoms improved with diuretic therapy, confirming the diagnoses of PPCM. It is important to recognise acute limb ischaemia as a rare manifestation of PPCM, as a timely diagnosis and effective treatment of the disease can improve the prognosis. We believe this is the first case to be reported in medical literature from Pakistan of a patient presenting PPCM with bilateral acute limb ischaemia and gangrene.


Assuntos
Cardiomiopatias/complicações , Embolia/etiologia , Artéria Femoral/diagnóstico por imagem , Gangrena/etiologia , Isquemia/etiologia , Transtornos Puerperais/diagnóstico por imagem , Amputação Cirúrgica , Cardiomiopatias/diagnóstico por imagem , Ecocardiografia , Embolectomia , Embolia/diagnóstico por imagem , Embolia/cirurgia , Feminino , Gangrena/cirurgia , Humanos , Isquemia/diagnóstico por imagem , Extremidade Inferior , Volume Sistólico , Falha de Tratamento , Ultrassonografia Doppler , Adulto Jovem
18.
J Nanosci Nanotechnol ; 19(11): 7363-7368, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31039897

RESUMO

The emerging biomedical applications of selenium nanoparticles (SeNPs) require facile and efficient strategy to assess its interactions with cell membrane. In this study, an efficient and reproducible microwave assisted method was used to synthesize SeNPs with controllable size distributions. The physical properties of the emergent structures, such as morphology, structure, and size were studied. The antimicrobial applications of SeNPs were assessed by electrochemical analyses that entailed the systematic acquisition of cyclic voltammetry data. Our results demonstrate a straightforward method to predict the integrity of bacterial cell membranes following the administration of SeNP treatments.

19.
J Hazard Mater ; 364: 441-448, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30384254

RESUMO

Pseudomonas aeruginosa and Staphylococcus aureus are among the hazardous biofilm forming bacteria ubiquitous in industrial/clinical wastes. Serious efforts are required to develop effective strategies to control surface-growing antibiotic resistant pathogenic bacterial communities which they are emerging as a global health issue. Blocking hazardous biofilms would be a useful aspect of biosurfactant coated nanoparticles (NPs). In this regard, we report a facile method for the synthesis of rhamnolipid (RL) coated silver (Ag) and iron oxide (Fe3O4) NPs and propose the mechanism of their synergistic antibacterial and anti-adhesive properties against biofilms formed by P. aeruginosa and S. aureus. These NPs demonstrated excellent anti-biofilm activity not only during the biofilms formation but also on the pre-formed biofilms. Mechanistically, RL coated silver (35 nm) and Fe3O4 NPs (48 nm) generate reactive oxygen species, which contribute to the antimicrobial activity. The presence of RLs shell on the nanoparticles significantly reduces the cell adhesion by modifying the surface hydrophobicity and hence enhancing the anti-biofilm property of NPs against both mentioned strains. These findings suggest that RL coated Ag and Fe3O4 NPs may be used as potent alternate to reduce the infection severity by inhibiting the biofilm formation and, therefore, they possess potential biomedical applications for antibacterial coatings and wound dressings.


Assuntos
Antibacterianos/farmacologia , Óxido Ferroso-Férrico/farmacologia , Glicolipídeos/farmacologia , Nanopartículas Metálicas/administração & dosagem , Prata/farmacologia , Tensoativos/farmacologia , Antibacterianos/química , Aderência Bacteriana/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Óxido Ferroso-Férrico/química , Glicolipídeos/química , Nanopartículas Metálicas/química , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/fisiologia , Prata/química , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/fisiologia , Tensoativos/química
20.
Biosens Bioelectron ; 117: 852-859, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-30096740

RESUMO

This work is the first report describing the solution grown 3D manganese oxide nanofibrous (MnO2 NFs) mesh and its potential for the simultaneous detection of biomolecules such as ascorbic acid and uric acid. The mesh is synthesized by a facile, one-pot, and cost-effective hydrothermal approach without using any template or structure directing compound. The morphology consists of randomly placed nanofibres possessing a diameter in the range of 10-25 nm, and length of several micron; constituting a highly porous and flexible material. The electrochemical potential was examined by recording cyclic voltammetry signals towards ascorbic acid and uric acid. The special mesh morphology offers a large surface area to promote enhanced electrochemical activity, and also provided a macroporous network that supported efficient mass transport. Additionally, the strong electronic cloud and roughness of MnO2 NFs mesh facilitated the fast oxidation of species at very low potential. The lower detection limit was found to be 1.33 µM (S/N = 3) and 1.03 µM (S/N = 3) for ascorbic acid and uric acid, respectively. The MnO2 NFs mesh modified electrodes can robustly differentiate both of them by giving well separate signals (Δ = 500 mV) indicating capability of the material towards selective detection. The sensor has been successfully applied to human blood and urine samples and the recoveries were found statistically significant. These results demonstrate the practical feasibility of 3D mesh to develop sensors for the accurate diagnosis of clinically important molecules.


Assuntos
Ácido Ascórbico/análise , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Compostos de Manganês/química , Nanofibras/química , Óxidos/química , Ácido Úrico/análise , Eletrodos , Humanos , Limite de Detecção , Oxirredução , Tamanho da Partícula , Sensibilidade e Especificidade , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...