Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Sci Total Environ ; 758: 143594, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33246723

RESUMO

Constructed wetlands are efficient in removing nitrogen from water; however, little is known about nitrogen-cycling pathways for nitrogen loss from tidal flow constructed wetlands. This study conducted molecular and stable isotopic analyses to investigate potential dissimilatory nitrate reduction to ammonium (DNRA), denitrification, nitrification, anaerobic ammonium oxidation (anammox), and their contributions to nitrogen removal by two tidal wetland mesocosms, PA (planted with Phragmites australis) and NP (unplanted), designated to treat Yangtze River Estuary water. Our results show the mesocosms removed ~22.6% of TN from nitrate-dominated river water (1.19 mg·L-1), with better performance obtained in PA than that in NP, which was consistent with the molecular and stable isotopic data. The potential activities of DNRA, anammox, denitrification and nitrification varied between 0.6 and 1.6, 4.6-37.3, 36.4-305.7, and 463.7-945.9 nmol N2 g-1 dry soil d-1, respectively, with higher values obtained in PA than NP. Nitrification accounted for 94.3-99.4% of NH4+ oxidation, with the rest through anammox. Denitrification contributed to 77.9-90.3% of NOx- reduction, compared to 9.2-21.6% and 0.5-1.5% via anammox and DNRA, respectively; 78.4-90.9% of N2 was produced through denitrification, with the rest via anammox. Pearson correlation analyses suggest NH4+ was the major factor regulating nitrification, while NO3- played an important role in the competition between denitrification and DNRA, and NO2- was a key restrictive factor for anammox. Overall, this study reveals the importance of nitrification, denitrification, anammox and DNRA in nitrogen removal, providing new insight into the nitrogen-cycling mechanisms in natural/artificial tidal wetlands.


Assuntos
Compostos de Amônio , Áreas Alagadas , Desnitrificação , Nitrificação , Nitrogênio , Oxirredução
3.
Sci Total Environ ; 716: 137054, 2020 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-32036140

RESUMO

Tidal flow constructed wetlands (TF CWs) have been considered an effective approach to treat contaminated river water, as well as a significant role in global matter cycles, especially for carbon and nitrogen. Notably, it has been thought that methane oxidation was completely catalyzed by the aerobic process, ignoring the anaerobic methane oxidation, such as the nitrite-dependent anaerobic methane oxidation (n-damo) process. In our current work, therefore, we used molecular and stable isotopes to investigate the biodiversity, quantity and potential rate of n-damo bacteria in the TF CWs located in the Xisha Wetland Park in the Yangtze River estuary, China. The results revealed that n-damo process was active in the collected soil cores, with a decreasing trend along water depths and rates ranging from 8.48 to 23.45 nmol CO2 g-1 dry soil d-1. The n-damo bacterial contributions to CH4 oxidation and N2 production in TF CWs reached 9.49-26.26% and 20.73-47.11%, respectively, suggesting that n-damo bacteria was an important nitrogen and methane sink in the TF CWs, but had been previously overlooked. The copy numbers of total bacterial 16S rRNA and pmoA genes were 1.84-11.21 × 109 and 0.59-2.72 × 106 copies g-1 ds, respectively, as the higher abundance was found in the soil at lower water levels during tidal submergence. Diverse n-damo bacterial 16S rRNA gene sequences belonged to group B, C and D were measured, and it was found that group B and C were the most frequently measured n-damo clusters in the TF CWs. In addition, nitrite was the key factor regulating the n-damo bacterial distribution in the TF CWs. This study would broaden our horizons and help us better understand the nitrogen and methane cycles in tidal ecosystems.


Assuntos
Áreas Alagadas , Anaerobiose , China , Ecossistema , Metano , Nitritos , Oxirredução , Filogenia , RNA Ribossômico 16S , Rios
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...