Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Crit Rev Anal Chem ; : 1-18, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38593048

RESUMO

Electrochemical sensors have been the subject of much research and development as of late, with several publications detailing new designs boasting enhanced performance metrics. That is, without a doubt, because such sensors stand out from other analytical tools thanks to their excellent analytical characteristics, low cost, and ease of use. Their progress has shown a trend toward seeking out novel useful nano structure materials. A variety of nanostructure metal oxides have been utilized in the creation of potentiometric sensors, which are the subject of this article. For screen-printed pH sensors, metal oxides have been utilized as sensing layers due to their mixed ion-electron conductivity and as paste-ion-selective electrode components and in solid-contact electrodes. Further significant uses include solid-contact layers. All the metal oxide uses mentioned are within the purview of this article. Nanoscale metal oxides have several potential uses in the potentiometry method, and this paper summarizes such uses, including hybrid materials and single-component layers. Potentiometric sensors with outstanding analytical properties can be manufactured entirely from metal oxides. These novel sensors outperform the more traditional, conventional electrodes in terms of useful characteristics. In this review, we looked at the potentiometric analytical properties of different building solutions with various nanoscale metal oxides.

2.
Chem Asian J ; : e202301107, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38419386

RESUMO

The development of green hydrogen generation technologies is increasingly crucial to meeting the growing energy demand for sustainable and environmentally acceptable resources. Many obstacles in the advancement of electrodes prevented water electrolysis, long thought to be an eco-friendly method of producing hydrogen gas with no carbon emissions, from coming to fruition. Because of their great electrical conductivity, maximum supporting capacity, ease of modification in valence states, durability in hard environments, and high redox characteristics, transition metal oxides (TMOs) have recently captured a lot of interest as potential cathodes and anodes. Electrochemical water splitting is the subject of this investigation, namely the role of transition metal oxides as both active and supportive sites. It has suggested various approaches for the logical development of electrode materials based on TMOs. These include adjusting the electronic state, altering the surface structure to control its resistance to air and water, improving the flow of energy and matter, and ensuring the stability of the electrocatalyst in challenging conditions. In this comprehensive review, it has been covered the latest findings in electrocatalysis of the Oxygen Evolution Reaction (OER) and Hydrogen Evaluation Reaction (HER), as well as some of the specific difficulties, opportunities, and current research prospects in this field.

4.
Nat Commun ; 14(1): 6681, 2023 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-37865647

RESUMO

Numerous studies are exploring the use of cell adoptive therapies to treat hematological malignancies as well as solid tumors. However, there are numerous factors that dampen the immune response, including viruses like human immunodeficiency virus. In this study, we leverage human-derived microphysiological models to reverse-engineer the HIV-immune system interaction and evaluate the potential of memory-like natural killer cells for HIV+ head and neck cancer, one of the most common tumors in patients living with human immunodeficiency virus. Here, we evaluate multiple aspects of the memory-like natural killer cell response in human-derived bioengineered environments, including immune cell extravasation, tumor penetration, tumor killing, T cell dependence, virus suppression, and compatibility with retroviral medication. Overall, these results suggest that memory-like natural killer cells are capable of operating without T cell assistance and could simultaneously destroy head and neck cancer cells as well as reduce viral latency.


Assuntos
Infecções por HIV , Neoplasias de Cabeça e Pescoço , Vírus , Humanos , HIV , Células Matadoras Naturais , Imunoterapia/métodos
5.
Reproduction ; 165(6): 617-628, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37068140

RESUMO

In brief: Developing novel therapies to cure and manage endometriosis is a major unmet need that will benefit over 180 million women worldwide. Results from the current study suggest that inhibitors of oxidative phosphorylation may serve as novel agents for the treatment of endometriosis. Abstract: Current therapeutic strategies for endometriosis focus on symptom management and are not curative. Here, we provide evidence supporting the inhibition of oxidative phosphorylation (OXPHOS) as a novel treatment strategy for endometriosis. Additionally, we report an organotypic organ-on-a-chip luminal model for endometriosis. The OXPHOS inhibitors, curcumin, plumbagin, and the FDA-approved anti-malarial agent, atovaquone, were tested against the endometriosis cell line, 12Z, in conventional as well as the new organotypic model. The results suggest that all three compounds inhibit proliferation and cause cell death of the endometriotic cells by inhibiting OXPHOS and causing an increase in intracellular oxygen radicals. The oxidative stress mediated by curcumin, plumbagin, and atovaquone causes DNA double-strand breaks as indicated by the elevation of phospho-γH2Ax. Mitochondrial energetics shows a significant decrease in oxygen consumption in 12Z cells. These experiments also highlight differences in the mechanism of action as curcumin and plumbagin inhibit complex I whereas atovaquone blocks complexes I, II, and III. Real-time assessment of cells in the lumen model showed inhibition of migration in response to the test compounds. Additionally, using two-photon lifetime imaging, we demonstrate that the 12Z cells in the lumen show decreased redox ratio (NAD(P)H/FAD) and lower fluorescence lifetime of NAD(P)H in the treated cells confirming major metabolic changes in response to inhibition of mitochondrial electron transport. The robust chemotoxic responses observed with atovaquone suggest that this anti-malarial agent may be repurposed for the effective treatment of endometriosis.


Assuntos
Antimaláricos , Antineoplásicos , Curcumina , Endometriose , Feminino , Humanos , Curcumina/farmacologia , Atovaquona/farmacologia , Fosforilação Oxidativa , Endometriose/tratamento farmacológico , NAD , Proliferação de Células
6.
Biomaterials ; 283: 121454, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35299086

RESUMO

Renal cell carcinomas are common genitourinary tumors characterized by high vascularization and strong reliance on glycolysis. Despite the many available therapies for renal cell carcinomas, first-line targeted therapies, such as cabozantinib, and durable reaponses are seen in only a small percentage of patients. Yet, little is known about the mechanisms that drive response (or lack thereof). This dearth of knowledge can be explained by the dynamic and complex microenvironment of renal carcinoma, which remains challenging to recapitulate in vitro. Here, we present a microphysiological model of renal cell carcinoma, including a tubular blood vessel model of induced pluripotent stem cell-derived endothelial cells and an adjacent 3D carcinoma model. Our model recapitulated hypoxia, glycolic metabolism, and sprouting angiogenesis. Using our model, we showed that cabozantinib altered cancer cell metabolism and decreased sprouting angiogenesis but did not restore barrier function. This microphysiological model could be helpful to elucidate, through multiple endpoints, the contributions of the relevant environmental components in eliciting a functional response or resistance to therapy in renal cell carcinoma.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Carcinoma de Células Renais/tratamento farmacológico , Células Endoteliais/metabolismo , Humanos , Imunoterapia , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/metabolismo , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo , Microambiente Tumoral
7.
Front Neurol ; 12: 668180, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34108930

RESUMO

Background: Facioscapulohumeral muscular dystrophy (FSHD) is one of the most common muscular dystrophies and predominantly affects facial and shoulder girdle muscles. Previous case reports and cohort studies identified minor cardiac abnormalities in FSHD patients, but their nature and frequency remain incompletely characterized. Methods: We reviewed cardiac, neurological and genetic findings of 104 patients with genetically confirmed FSHD. Results: The most common conduction abnormality was complete (7%) or incomplete (5%) right bundle branch block (RBBB). Bifascicular block, left anterior fascicular block, complete atrioventricular block, and 2:1 atrioventricular block each occurred in 1% of patients. Atrial fibrillation or flutter were seen in 5% of patients. Eight percent of patients had heart failure with reduced ejection fraction and 25% had valvular disease. The latter included aortic stenosis in 6% (severe in 4% and moderate in 2%) and moderate aortic regurgitation in 8%. Mitral valve prolapse (MVP) was present in 9% of patients without significant mitral regurgitation. There were no significant associations between structural or conduction abnormalities and age, degree of muscle weakness, or size of the 4q deletion. Conclusions: Both structural and conduction abnormalities can occur in FSHD. The most common abnormalities are benign (RBBB and MVP), but more significant cardiac involvement was also observed. The presence of cardiac abnormalities cannot be predicted from the severity of the neurological phenotype, nor from the genotype.

8.
Lab Chip ; 21(6): 1139-1149, 2021 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-33533390

RESUMO

Melanoma evolution is a complex process. The role epidermal keratinocytes and dermal fibroblasts play in this process and the mechanisms involved in tumor-stroma interactions remain poorly understood. Here, we used a microfluidic platform to evaluate the cross-talk between human primary melanoma cells, keratinocytes and dermal fibroblasts. The microfluidic device included multiple circular chambers separated by a series of narrow connection channels. The microdevice design allowed us to develop a new cell patterning method based on air-walls, removing the need for hydrogel barriers, porous membranes, or external equipment. Using this method, we co-cultured melanoma cells in the presence of keratinocytes and/or dermal fibroblasts. The results demonstrated that the presence of dermal fibroblasts and keratinocytes led to changes in melanoma cell morphology and growth pattern. Molecular analysis revealed changes in the chemokine secretion pattern, identifying multiple secreted factors involved in tumor progression. Finally, optical metabolic imaging showed that melanoma cells, fibroblasts, and keratinocytes exhibited different metabolic features. Additionally, the presence of stromal cells led to a metabolic shift in melanoma cells, highlighting the role the skin microenvironment on melanoma evolution.


Assuntos
Melanoma , Microfluídica , Células Cultivadas , Fibroblastos , Humanos , Queratinócitos , Fenótipo , Microambiente Tumoral
9.
Sci Adv ; 7(8)2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33597234

RESUMO

Solid tumors generate a suppressive environment that imposes an overwhelming burden on the immune system. Nutrient depletion, waste product accumulation, hypoxia, and pH acidification severely compromise the capacity of effector immune cells such as T and natural killer (NK) cells to destroy cancer cells. However, the specific molecular mechanisms driving immune suppression, as well as the capacity of immune cells to adapt to the suppressive environment, are not completely understood. Thus, here, we used an in vitro microfluidic tumor-on-a-chip platform to evaluate how NK cells respond to the tumor-induced suppressive environment. The results demonstrated that the suppressive environment created by the tumor gradually eroded NK cell cytotoxic capacity, leading to compromised NK cell surveillance and tumor tolerance. Further, NK cell exhaustion persisted for an extended period of time after removing NK cells from the microfluidic platform. Last, the addition of checkpoint inhibitors and immunomodulatory agents alleviated NK cell exhaustion.


Assuntos
Antineoplásicos , Neoplasias , Antineoplásicos/uso terapêutico , Humanos , Células Matadoras Naturais , Dispositivos Lab-On-A-Chip , Microfluídica , Neoplasias/tratamento farmacológico
10.
Int J Mol Sci ; 21(23)2020 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-33260673

RESUMO

Tumor-specific metabolic adaptations offer an interesting therapeutic opportunity to selectively destroy cancer cells. However, solid tumors also present gradients of nutrients and waste products across the tumor mass, forcing tumor cells to adapt their metabolism depending on nutrient availability in the surrounding microenvironment. Thus, solid tumors display a heterogenous metabolic phenotype across the tumor mass, which complicates the design of effective therapies that target all the tumor populations present. In this work, we used a microfluidic device to study tumor metabolic vulnerability to several metabolic inhibitors. The microdevice included a central chamber to culture tumor cells in a three-dimensional (3D) matrix, and a lumen in one of the chamber flanks. This design created an asymmetric nutrient distribution across the central chamber, generating gradients of cell viability. The results revealed that tumor cells located in a nutrient-enriched environment showed low to no sensitivity to metabolic inhibitors targeting glycolysis, fatty acid oxidation, or oxidative phosphorylation. Conversely, when cell density inside of the model was increased, compromising nutrient supply, the addition of these metabolic inhibitors disrupted cellular redox balance and led to tumor cell death.


Assuntos
Dispositivos Lab-On-A-Chip , Microfluídica , Modelos Biológicos , Neoplasias/metabolismo , Contagem de Células , Humanos , Células MCF-7 , Necrose , Neoplasias/patologia , Hipóxia Tumoral
11.
Lab Chip ; 19(20): 3461-3471, 2019 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-31506657

RESUMO

Limited blood supply and rapid tumor metabolism within solid tumors leads to nutrient starvation, waste product accumulation and the generation of pH gradients across the tumor mass. These environmental conditions modify multiple cellular functions, including metabolism, proliferation, and drug response. However, capturing the spatial metabolic and phenotypic heterogeneity of the tumor with classic in vitro models remains challenging. Thus, in this work a microfluidic tumor slice model was developed to study cell behavior under metabolic starvation gradients. The presented microdevice comprises a central chamber where tumor cells were cultured in a 3D collagen hydrogel. A lumen on the flank of the chamber was used to perfuse media, mimicking the vasculature. Under these circumstances, tumor cell metabolism led to the generation of viability, proliferation and pH gradients. The model decoupled the influence of oxygen from other nutrients, revealing that cell necrosis at the core of the model could be explained by nutrient starvation. The microdevice can be disassembled to retrieve the cells from the desired locations to study molecular adaptions due to nutrient starvation. When exposed to these pH gradients and low nutrient conditions, cancer cells showed multiple changes in their gene expression profile depending on their distance from the lumen. Those cells located further from the lumen upregulated several genes related to stress and survival response, whereas genes related to proliferation and DNA repair were downregulated. This model may help to identify new therapeutic opportunities to target the metabolic heterogeneity observed in solid tumors.


Assuntos
Dispositivos Lab-On-A-Chip , Microfluídica/métodos , Linhagem Celular Tumoral , Proliferação de Células , Colágeno/química , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Fase G1 , Humanos , Hidrogéis/química , Concentração de Íons de Hidrogênio , Microfluídica/instrumentação , Oxigênio/análise , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...