Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 5931, 2022 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-36209135

RESUMO

We show here that population growth, resolved at the county level, is spatially heterogeneous both among and within the U.S. metropolitan statistical areas. Our analysis of data for over 3,100 U.S. counties reveals that annual population flows, resulting from domestic migration during the 2015-2019 period, are much larger than natural demographic growth, and are primarily responsible for this heterogeneous growth. More precisely, we show that intra-city flows are generally along a negative population density gradient, while inter-city flows are concentrated in high-density core areas. Intra-city flows are anisotropic and generally directed towards external counties of cities, driving asymmetrical urban sprawl. Such domestic migration dynamics are also responsible for tempering local population shocks by redistributing inflows within a given city. This spill-over effect leads to a smoother population dynamics at the county level, in contrast to that observed at the city level. Understanding the spatial structure of domestic migration flows is a key ingredient for analyzing their drivers and consequences, thus representing a crucial knowledge for urban policy makers and planners.


Assuntos
Emigração e Imigração , Crescimento Demográfico , Cidades , Demografia , Humanos , Dinâmica Populacional , População Urbana
2.
R Soc Open Sci ; 7(1): 192118, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32218986

RESUMO

The fitness landscape metaphor has been central in our way of thinking about adaptation. In this scenario, adaptive walks are idealized dynamics that mimic the uphill movement of an evolving population towards a fitness peak of the landscape. Recent works in experimental evolution have demonstrated that the constraints imposed by epistasis are responsible for reducing the number of accessible mutational pathways towards fitness peaks. Here, we exhaustively analyse the statistical properties of adaptive walks for two empirical fitness landscapes and theoretical NK landscapes. Some general conclusions can be drawn from our simulation study. Regardless of the dynamics, we observe that the shortest paths are more regularly used. Although the accessibility of a given fitness peak is reasonably correlated to the number of monotonic pathways towards it, the two quantities are not exactly proportional. A negative correlation between predictability and mean path divergence is established, and so the decrease of the number of effective mutational pathways ensures the convergence of the attraction basin of fitness peaks. On the other hand, other features are not conserved among fitness landscapes, such as the relationship between accessibility and predictability.

3.
Phys Rev E ; 99(3-1): 032301, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30999415

RESUMO

Groupthink occurs when everyone in a group starts thinking alike, as when people put unlimited faith in a leader. Avoiding this phenomenon is a ubiquitous challenge to problem-solving enterprises and typical countermeasures involve the mobility of group members. Here we use an agent-based model of imitative learning to study the influence of the mobility of the agents on the time they require to find the global maxima of NK-fitness landscapes. The agents cooperate by exchanging information on their fitness and use this information to copy the fittest agent in their influence neighborhoods, which are determined by face-to-face interaction networks. The influence neighborhoods are variable since the agents perform random walks in a two-dimensional space. We find that mobility is slightly harmful for solving easy problems, i.e., problems that do not exhibit suboptimal solutions or local maxima. For difficult problems, however, mobility can prevent the imitative search being trapped in suboptimal solutions and guarantees a better performance than the independent search for any system size.

4.
Phys Life Rev ; 31: 320-331, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30635174

RESUMO

Collective or group intelligence is manifested in the fact that a team of cooperating agents can solve problems more efficiently than when those agents work in isolation. Although cooperation is, in general, a successful problem solving strategy, it is not clear whether it merely speeds up the time to find the solution, or whether it alters qualitatively the statistical signature of the search for the solution. Here we review and offer insights on two agent-based models of distributed cooperative problem-solving systems, whose task is to solve a cryptarithmetic puzzle. The first model is the imitative learning search in which the agents exchange information on the quality of their partial solutions to the puzzle and imitate the most successful agent in the group. This scenario predicts a very poor performance in the case imitation is too frequent or the group is too large, a phenomenon akin to Groupthink of social psychology. The second model is the blackboard organization in which agents read and post hints on a public blackboard. This brainstorming scenario performs the best when there is a stringent limit to the amount of information that is exhibited on the board. Both cooperative scenarios produce a substantial speed up of the time to solve the puzzle as compared with the situation where the agents work in isolation. The statistical signature of the search, however, is the same as that of the independent search.


Assuntos
Inteligência , Modelos Neurológicos , Humanos , Resolução de Problemas
5.
Phys Rev E ; 95(2-1): 022305, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28298007

RESUMO

The solution of today's complex problems requires the grouping of task forces whose members are usually connected remotely over long physical distances and different time zones. Hence, understanding the effects of imposed communication patterns (i.e., who can communicate with whom) on group performance is important. Here we use an agent-based model to explore the influence of the betweenness centrality of the nodes on the time the group requires to find the global maxima of NK-fitness landscapes. The agents cooperate by broadcasting messages, informing on their fitness to their neighbors, and use this information to copy the more successful agents in their neighborhood. We find that for easy tasks (smooth landscapes), the topology of the communication network has no effect on the performance of the group, and that the more central nodes are the most likely to find the global maximum first. For difficult tasks (rugged landscapes), however, we find a positive correlation between the variance of the betweenness among the network nodes and the group performance. For these tasks, the performances of individual nodes are strongly influenced by the agents' dispositions to cooperate and by the particular realizations of the rugged landscapes.

6.
Phys Rev E ; 94(5-1): 052149, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27967025

RESUMO

Axelrod's model with F=2 cultural features, where each feature can assume k states drawn from a Poisson distribution of parameter q, exhibits a continuous nonequilibrium phase transition in the square lattice. Here we use extensive Monte Carlo simulations and finite-size scaling to study the critical behavior of the order parameter ρ, which is the fraction of sites that belong to the largest domain of an absorbing configuration averaged over many runs. We find that it vanishes as ρ∼(q_{c}^{0}-q)^{ß} with ß≈0.25 at the critical point q_{c}^{0}≈3.10 and that the exponent that measures the width of the critical region is ν^{0}≈2.1. In addition, we find that introduction of long-range links by rewiring the nearest-neighbors links of the square lattice with probability p turns the transition discontinuous, with the critical point q_{c}^{p} increasing from 3.1 to 27.17, approximately, as p increases from 0 to 1. The sharpness of the threshold, as measured by the exponent ν^{p}≈1 for p>0, increases with the square root of the number of nodes of the resulting small-world network.

7.
Artigo em Inglês | MEDLINE | ID: mdl-25974442

RESUMO

In this paper we study updating effects on cellular automata rule space. We consider a subset of 6144 order-3 automata from the space of 262144 bidimensional outer-totalistic rules. We compare synchronous to asynchronous and sequential updatings. Focusing on two automata, we discuss how update changes destroy typical structures of these rules. Besides, we show that the first-order phase transition in the multiverse of synchronous cellular automata, revealed with the use of a recently introduced control parameter, seems to be robust not only to changes in update schema but also to different initial densities.


Assuntos
Modelos Teóricos
8.
Artigo em Inglês | MEDLINE | ID: mdl-25353755

RESUMO

Conway's cellular automaton Game of Life has been conjectured to be a critical (or quasicritical) dynamical system. This criticality is generally seen as a continuous order-disorder transition in cellular automata (CA) rule space. Life's mean-field return map predicts an absorbing vacuum phase (ρ = 0) and an active phase density, with ρ = 0.37, which contrasts with Life's absorbing states in a square lattice, which have a stationary density of ρ(2D) ≈ 0.03. Here, we study and classify mean-field maps for 6144 outer-totalistic CA and compare them with the corresponding behavior found in the square lattice. We show that the single-site mean-field approach gives qualitative (and even quantitative) predictions for most of them. The transition region in rule space seems to correspond to a nonequilibrium discontinuous absorbing phase transition instead of a continuous order-disorder one. We claim that Life is a quasicritical nucleation process where vacuum phase domains invade the alive phase. Therefore, Life is not at the "border of chaos," but thrives on the "border of extinction."


Assuntos
Algoritmos , Biomimética/métodos , Fenômenos Fisiológicos Celulares , Teoria dos Jogos , Modelos Estatísticos , Animais , Simulação por Computador , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...