Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Pharm Res ; 33(12): 2954-2966, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27620175

RESUMO

PURPOSE: Methamphetamine (METH) abuse is a worldwide drug problem, yet no FDA-approved pharmacological treatments are available for METH abuse. Therefore, we produced an anti-METH single chain antibody fragment (scFv7F9Cys) as a pharmacological treatment for METH abuse. ScFv's have a short half-life due to their small size, limiting their clinical use. Thus, we examined the pharmacokinetic effects of conjugating poly(ethylene) glycol (-PEG) to scFv7F9Cys to extend its functional half-life. METHODS: The affinity of scFv7F9Cys and PEG conjugates to METH was determined in vitro via equilibrium dialysis saturation binding. Pharmacokinetic and parameters of scFv7F9Cys and scFv7F9Cys-PEG20K (30 mg/kg i.v. each) and their ability to bind METH in vivo were determined in male Sprague-Dawley rats receiving a subcutaneous infusion of METH (3.2 mg/kg/day). RESULTS: Of three PEGylated conjugates, scFv7F9Cys-PEG20K was determined the most viable therapeutic candidate. PEGylation of scFv7F9Cys did not alter METH binding functionality in vitro, and produced a 27-fold increase in the in vivo half-life of the antibody fragment. Furthermore, total METH serum concentrations increased following scFv7F9Cys or scFv7F9Cys-PEG20K administration, with scFv7F9Cys-PEG20K producing significantly longer changes in METH distribution than scFv7F9Cys. CONCLUSIONS: PEGylation of scFv7F9Cys significantly increase the functional half-life of scFv7F9Cys, suggesting it may be a long-lasting pharmacological treatment option for METH abuse.


Assuntos
Estimulantes do Sistema Nervoso Central/imunologia , Metanfetamina/imunologia , Polietilenoglicóis/química , Anticorpos de Cadeia Única/farmacocinética , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Meia-Vida , Masculino , Ratos Sprague-Dawley , Anticorpos de Cadeia Única/química , Distribuição Tecidual
2.
Curr Addict Rep ; 1(3): 237-242, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26413453

RESUMO

Psychostimulants are among the most widely-abused substances worldwide, and typically exert their abuse-related effects via interactions with monoamine reuptake transporters within the CNS. Over the last decade, a symbiotic relationship between psychostimulant abuse and HIV infection has been demonstrated, where psychostimulants potentiate the effects of HIV infection, and HIV infection increases sensitivity to psychostimulant drugs. Most recently, a new class of designer psychostimulants has emerged in abuse-ready "bath salt" preparations. These commercial products typically contain ring-substituted and/or side-chain-substituted analogues of cathinone, which is itself a psychostimulant drug of abuse in its natural plant form. The cathinone analogues exhibit a range of interactions with monoamine transporters, from cocaine-like reuptake inhibition to methamphetamine-like release. Since the primary mechanism of action of these novel drugs overlaps with those of traditional psychostimulants, it may be the case that the cathinone analogues also interact with HIV infection. As use of these emerging cathinone-derived drugs continues to rise, there is an urgent need to better understand the pharmacology and toxicology of these novel compounds, both in terms of their abuse-related effects, and in terms of their capacity to interact with HIV infection.

3.
PLoS One ; 6(7): e21917, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21755008

RESUMO

BACKGROUND: K2 products are synthetic cannabinoid-laced, marijuana-like drugs of abuse, use of which is often associated with clinical symptoms atypical of marijuana use, including hypertension, agitation, hallucinations, psychosis, seizures and panic attacks. JWH-018, a prevalent K2 synthetic cannabinoid, is structurally distinct from Δ(9)-THC, the main psychoactive ingredient in marijuana. Since even subtle structural differences can lead to differential metabolism, formation of novel, biologically active metabolites may be responsible for the distinct effects associated with K2 use. The present study proposes that K2's high adverse effect occurrence is due, at least in part, to distinct JWH-018 metabolite activity at the cannabinoid 1 receptor (CB1R). METHODS/PRINCIPAL FINDINGS: JWH-018, five potential monohydroxylated metabolites (M1-M5), and one carboxy metabolite (M6) were examined in mouse brain homogenates containing CB1Rs, first for CB1R affinity using a competition binding assay employing the cannabinoid receptor radioligand [(3)H]CP-55,940, and then for CB1R intrinsic efficacy using an [(35)S]GTPγS binding assay. JWH-018 and M1-M5 bound CB1Rs with high affinity, exhibiting K(i) values that were lower than or equivalent to Δ(9)-THC. These molecules also stimulated G-proteins with equal or greater efficacy relative to Δ(9)-THC, a CB1R partial agonist. Most importantly, JWH-018, M2, M3, and M5 produced full CB1R agonist levels of activation. CB1R-mediated activation was demonstrated by blockade with O-2050, a CB1R-selective neutral antagonist. Similar to Δ(9)-THC, JWH-018 and M1 produced a marked depression of locomotor activity and core body temperature in mice that were both blocked by the CB1R-preferring antagonist/inverse agonist AM251. CONCLUSIONS/SIGNIFICANCE: Unlike metabolites of most drugs, the studied JWH-018 monohydroxylated compounds, but not the carboxy metabolite, retain in vitro and in vivo activity at CB1Rs. These observations, combined with higher CB1R affinity and activity relative to Δ(9)-THC, may contribute to the greater prevalence of adverse effects observed with JWH-018-containing products relative to cannabis.


Assuntos
Indóis/metabolismo , Desintoxicação Metabólica Fase I , Naftalenos/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Animais , Temperatura Corporal/efeitos dos fármacos , Dronabinol/metabolismo , Dronabinol/farmacologia , Hidroxilação , Indóis/química , Camundongos , Atividade Motora/efeitos dos fármacos , Naftalenos/química , Receptor CB1 de Canabinoide/agonistas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...