Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 32(10): 16831-16844, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38858880

RESUMO

Speckle patterns offer valuable insights into the surface characteristics or the characteristics of the light generating the speckle. One possible way to extract this information is via spectral speckle correlation (SSC). The cross-correlation between two speckle fields, generated at different wavelengths, can be used for example to determine the roughness of the illuminated surface. Taking defocused measurements of the surface or measuring on a tilted surface leads to a displacement between the speckle, which in turn affects the cross-correlation and leads to errors in the calculated roughness. In this work we present a model to determine the lateral speckle displacement for a change in wavelength in the case of subjective speckle and defocused, tilted objects. This model is therefore applicable to a wide range of applications and allows to estimate and correct for this speckle displacement. Experimental results show sub-pixel accuracy for object tilts up to ±7° and defocus distances up to ±25 mm.

2.
Sensors (Basel) ; 24(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732976

RESUMO

This work studies enhancing the capabilities of compact laser spectroscopes integrated into space-exploration rovers by adding 3D topography measurement techniques. Laser spectroscopy enables the in situ analysis of sample composition, aiding in the understanding of the geological history of extraterrestrial bodies. To complement spectroscopic data, the inclusion of 3D imaging is proposed to provide unprecedented contextual information. The morphological information aids material characterization and hence the constraining of rock and mineral histories. Assigning height information to lateral pixels creates topographies, which offer a more complete spatial dataset than contextual 2D imaging. To aid the integration of 3D measurement into future proposals for rover-based laser spectrometers, the relevant scientific, rover, and sample constraints are outlined. The candidate 3D technologies are discussed, and estimates of performance, weight, and power consumptions guide the down-selection process in three application examples. Technology choice is discussed from different perspectives. Inline microscopic fringe-projection profilometry, incoherent digital holography, and multiwavelength digital holography are found to be promising candidates for further development.

3.
Opt Lett ; 49(3): 718-721, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38300098

RESUMO

The van Cittert-Zernike theorem states that the Fourier transform of the intensity distribution function of a distant, incoherent source is equal to the complex degree of coherence. In this Letter, we present a method for measuring the complex degree of coherence in one shot by recording the interference patterns produced by multiple aperture pairs. The intensity of the sample is obtained by Fourier transforming the complex degree of coherence. The experimental verification by using a simple object is presented together with a discussion on how the method could be improved for imaging more complex samples.

4.
Opt Express ; 31(22): 36388-36401, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-38017792

RESUMO

Lensless microscopy is attractive because lenses are often large, heavy and expensive. We report diffraction-limited, sub-micrometer resolution in a lensless imaging system that does not need a reference wave and imposes few restrictions on the density of the sample. We use measurements of the intensity of light scattered by the sample at multiple heights above the sample and a modified Gerchberg-Saxton algorithm to reconstruct the phase of the optical field. We introduce a pixel-splitting algorithm that increases resolution beyond the size of the sensor pixels, and implement high-dynamic-range measurements. The resolution depends on the numerical aperture of the first measurement height only, while the field of view is limited by the last measurement height only. As a result, resolution and field of view can be controlled independently. The pixel-splitting algorithm also allows imaging with light of low spatial coherence, and we show that such low coherence is beneficial for a larger field of view. Using illumination from three LEDs, we produce full-color images of biological samples. Finally, we provide a detailed analysis of the limiting factors of this lensless microscopy system. The good performance demonstrated here can allow lensless systems to replace conventional microscope objectives in some situations.

5.
Appl Opt ; 62(10): D68-D76, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37132771

RESUMO

In this paper, we demonstrate digital holographic imaging through a 27-m-long fog tube filled with ultrasonically generated fog. Its high sensitivity makes holography a powerful technology for imaging through scattering media. With our large-scale experiments, we investigate the potential of holographic imaging for road traffic applications, where autonomous driving vehicles require reliable environmental perception in all weather conditions. We compare single-shot off-axis digital holography to conventional imaging (with coherent illumination) and show that holographic imaging requires 30 times less illumination power for the same imaging range. Our work includes signal-to-noise ratio considerations, a simulation model, and quantitative statements on the influence of various physical parameters on the imaging range.

6.
Opt Express ; 30(13): 23035-23049, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-36224992

RESUMO

In this article we present the simulation and experimental implementation of a camera-based sensor with low object-space numerical aperture that is capable of measuring the distance of multiple object points with an accuracy of 8.51 µm over a range of 20 mm. The overall measurement volume is 70 mm × 50 mm × 20 mm. The lens of the camera is upgraded with a diffractive optical element (DOE) which fulfills two tasks: replication of the single object point to a predefined pattern of K spots in the image plane and adding a vortex point spread function (PSF), whose shape and rotation is sensitive to defocus. We analyze the parameters of the spiral phase mask and discuss the depth reconstruction approach. By applying the depth reconstruction to each of the K replications and averaging the results, we experimentally show that the accuracy of the reconstructed depth signal can be improved by a factor of up to 3 by the replication approach. This replication method (also called multipoint method) not only improves accuracy of depth reconstruction but also of lateral position measurement. Therefore, the presented concept can be used as a single camera 3D position sensor for multiple points with high lateral as well as depth resolution.

7.
Opt Express ; 30(18): 32680-32692, 2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36242324

RESUMO

In this work, we propose a physics-enhanced two-to-one Y-neural network (two inputs and one output) for phase retrieval of complex wavefronts from two diffraction patterns. The learnable parameters of the Y-net are optimized by minimizing a hybrid loss function, which evaluates the root-mean-square error and normalized Pearson correlated coefficient on the two diffraction planes. An angular spectrum method network is designed for self-supervised training on the Y-net. Amplitudes and phases of wavefronts diffracted by a USAF-1951 resolution target, a phase grating of 200 lp/mm, and a skeletal muscle cell were retrieved using a Y-net with 100 learning iterations. Fast reconstructions could be realized without constraints or a priori knowledge of the samples.


Assuntos
Redes Neurais de Computação , Física
8.
Appl Opt ; 52(12): 2610-8, 2013 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-23669668

RESUMO

Methods for measuring and compensating the nonlinear electro-optical effect of transmissive, parallel-aligned liquid crystal (LC)-based spatial light modulators (SLMs) are presented. Particularly, the analysis is focused on the spatial nonuniformity of the voltage versus phase modulation characteristics for an active-matrix-driven, electrically controlled birefringence type LC-SLM. A high-quality reconstruction from phase-only modulating SLMs requires a well-calibrated phase addressing across the entire SLM panel. I discuss how the commonly inherent phase-response inhomogeneity of LC-SLM is characterized by purposeful localized measurement techniques. This phase-response inhomogeneity is efficiently compensated by utilizing a Legendre polynomial representation in combination with a remapping of an 8 bit gray level addressing. The calibration procedure is corroborated by measurement data. The LC-SLM's experimental demonstration finally verifies the resultant improvement in holographic imaging.

9.
Opt Lett ; 37(11): 1955-7, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-22660085

RESUMO

We demonstrate a full-range complex and transmissive spatial light modulator (SLM) for simultaneous and independent amplitude and phase modulation of an input wave field. Arbitrary scalar complex optical fields are generated by stacking a pixelated liquid crystal display operating in phase-only (2π) modulation with passive polarization-sensitive components. The principle is based on optical combining the light fields of two neighboring phase-only modulating pixels, which were made orthogonally polarized by a structured half-wave plate, then passing through a birefringent plate to laterally shift one of the beams collinear to the other, and finally bringing to interference by a linear polarizer. Complex modulation by the proposed SLM is experimentally verified in monochrome green operation.

10.
Anal Chem ; 80(21): 8163-70, 2008 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-18821778

RESUMO

The first analytical method for simultaneous speciation analysis of five of the most important gadolinium-based magnetic resonance imaging (MRI) contrast agents in blood plasma samples was developed. Gd-DTPA (Magnevist), Gd-BT-DO3A (Gadovist), Gd-DOTA (Dotarem), Gd-DTPA-BMA (Omniscan), and Gd-BOPTA (Multihance) were separated by hydrophilic interaction liquid chromatography (HILIC) and detected with electrospray mass spectrometry (ESI-MS). Spiking experiments of blank plasma with Magnevist and Gadovist were performed to determine the analytical figures of merit and the recovery rates. The limits of detection ranged from 1 x 10 (-7) to 1 x 10 (-6) mol/L depending on the ionization properties of the individual compounds, and limits of quantification ranged from 5 x 10 (-7) to 5 x 10 (-6) mol/L. The linear concentration range comprised 2 orders of magnitude. With application of this method, blood plasma samples of 10 healthy volunteers, with Magnevist or Gadovist medication, were analyzed for Gd-DTPA and Gd-BT-DO3A, respectively. The obtained results were successfully validated with inductively coupled plasma-optical emission spectroscopy (ICP-OES).


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Meios de Contraste/análise , Meios de Contraste/metabolismo , Gadolínio/sangue , Interações Hidrofóbicas e Hidrofílicas , Imageamento por Ressonância Magnética/instrumentação , Imageamento por Ressonância Magnética/métodos , Adulto , Idoso , Cromatografia Líquida de Alta Pressão/instrumentação , Meios de Contraste/química , Feminino , Gadolínio/química , Humanos , Masculino , Pessoa de Meia-Idade , Estrutura Molecular
11.
IEEE Trans Biomed Eng ; 55(2 Pt 1): 581-8, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18269993

RESUMO

A long-term implantable photoplethysmographic sensor system is proposed. The system employs an elastic cuff which is directly wrapped around an arterial blood vessel. The optically transparent cuff is equipped with light emitting diodes and a photo transistor including the technology of pulse oximetry. The sensor will permit real-time, continuous monitoring of important vital parameters such as arterial blood oxygen saturation and pulse rate over a long-term period in vivo. We emphasize on the specific requirements for design and instrumentation of the implantable sensor and discuss first in vitro data acquired with that new photonics-based sensor.


Assuntos
Diagnóstico por Computador/instrumentação , Monitorização Ambulatorial/instrumentação , Oximetria/instrumentação , Próteses e Implantes , Processamento de Sinais Assistido por Computador/instrumentação , Transdutores , Diagnóstico por Computador/métodos , Desenho de Equipamento , Análise de Falha de Equipamento , Iluminação/instrumentação , Iluminação/métodos , Monitorização Ambulatorial/métodos , Oximetria/métodos , Reprodutibilidade dos Testes , Semicondutores , Sensibilidade e Especificidade
12.
Opt Express ; 15(21): 14146-54, 2007 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-19550687

RESUMO

A design method for correcting chromatic as well as spherical aberrations of variable-focus, multi-chamber liquid lenses is described. By combining suitable optical liquids with appropriate radii of the liquid's interfaces, liquid lenses with superior, diffraction-limited resolution over a wide focal tuning range are possible. For an infinite object distance, the analytic thin-lens approximation of an achromatic positive/negative varifocal liquid lens is derived and the obtained results are compared with ray-traced optimized designs which consider finite thicknesses and rigid cover glasses. As a design example, the optical performance of a 4mm-diameter positive/negative f /3.6 achromatic liquid lens is given in detail.

13.
Appl Opt ; 44(27): 5786-92, 2005 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-16201443

RESUMO

A new interferometer design for microlens testing is presented. The phase-shifting system combines the advantages of a Twyman-Green and a Mach-Zehnder interferometer and permits full characterization of the aberrations of microlenses as well as radius of curvature and focal length measurements. The Twyman-Green system is applied to surface testing in reflection (single reflection), whereas the Mach-Zehnder system is used for lens testing in transmission (single pass). Both measurements are performed without removal of the test part, allowing for combination of the results without confusion of the actual lens and without an azimuthal orientation error. The interferometer setup is explained, the test procedure is described, and experimental results are given.

14.
Appl Opt ; 42(22): 4468-79, 2003 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-12916611

RESUMO

A complete absolute interferometric test of axially symmetric aspheres is presented. The method is based on a specially designed computer-generated hologram (CGH) that reconstructs an aspherical wave as well as a spherical auxiliary wave. Since both phase functions have the same symmetry and their pattern is simultaneously encoded, we call this type of multiplex hologram a Twin-CGH. The spherical wave is used for calibration. The aberrations of the spherical auxiliary wave are measured absolutely with either a spherical mirror or an absolute test for Fresnel zone plates. Thus the two types of aberration inherent in the CGH can be identified and separated from each other. The errors of the spherical wave can be transferred to those of the aspherical wave. Two different methods thatuse Twin-CGHs for absolute testing of aspheric surfaces are described. Test procedures are explained, equations are derived, and experimental results are presented. A mutual comparison of the two results and a comparison with the established N-position rotation test are given.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...