Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Transl Anim Sci ; 8: txae038, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38572172

RESUMO

Alfalfa is a commonly grown forage in the Intermountain West region of the United States and is often included in the diet of dairy cattle. Alfalfa provides a variety of different nutrients, but the nutrient content of alfalfa varies depending on factors such as the soil, region, cutting, and climate. However, alfalfa leaves tend to have less variation in their nutrient content than alfalfa stems. Fractionating alfalfa may be one way to improve control of nutrients provided when developing a ration for developing dairy heifers. The purpose of this study was to determine whether including fractionated alfalfa in the diet impacts the growth or conception rates of developing dairy heifers. Heifers were allocated to one of three treatments: a control group fed a typical diet (CON; n = 8), a diet that replaced alfalfa with fractionated alfalfa leaf pellets and alfalfa stems (ProLEAF MAX + ProFiber Plus; PLM + PFP; n = 8), or a diet that replaced alfalfa with alfalfa stems (PFP; n = 8) for 85 d. Heifers were fed individually twice daily and weight, hip height (HH), and wither height (WH) were recorded every 14 d. Additionally, blood was collected every 28 d, and conception rates were recorded at the end of the trial. Heifers receiving the PFP diet consumed less dry matter (P = 0.001) than the CON treatment. Analyses were then conducted to determine nutrient intake and heifers receiving the PFP diet also consumed less neutral detergent fiber (P = 0.02), acid detergent fiber (P = 0.02), crude protein (P = 0.001), and net energy for maintenance (P = 0.001) than heifers consuming the CON diet; however, no differences (P > 0.10) were observed between heifers fed the CON and PLM + PFP diets. Analysis of body weight gain over the feeding period showed no difference (P = 0.52) among heifers consuming the different treatment diets. Additionally, treatment did not affect average daily gain (P = 0.49), gain:feed (P = 0.82), HH gain (P = 0.20), or WH gain (P = 0.44) among heifers receiving different diets. Treatment × time altered (P < 0.001) blood urea nitrogen when analyzed as a repeated measure. Total feed cost was lowest (P < 0.001) for the PFP diet and cost of gain tended (P = 0.09) to be increased for the PLM + PFP diet compared to the CON diet. Overall, these data indicate that including alfalfa stems in a developing heifer diet may decrease dry matter intake, lower input costs, and increase profitability, without negatively impacting growth.

2.
Animals (Basel) ; 14(5)2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38473094

RESUMO

The myokines interleukin 6 (IL-6), interleukin 15 (IL-15), myonectin (CTRP15), fibronectin type III domain containing protein 5/irisin (FNDC5), and brain-derived neurotrophic factor (BDNF) are associated with skeletal muscle cell proliferation, differentiation, and muscle hypertrophy in biomedical model species. This study evaluated whether these myokines are produced by cultured bovine satellite cells (BSCs) harvested from 3- and 11-month-old commercial black Angus steers and if the expression and secretion of these targets change across 0, 12, 24, and 48 h in vitro. IL-6, IL-15, FNDC5, and BDNF expression were greater (p ≤ 0.05) in the differentiated vs. undifferentiated BSCs at 0, 12, 24, and 48 h. CTRP15 expression was greater (p ≤ 0.03) in the undifferentiated vs. differentiated BSCs at 24 and 48 h. IL-6 and CTRP15 protein from culture media were greater (p ≤ 0.04) in undifferentiated vs. differentiated BSCs at 0, 12, 24, and 48 h. BDNF protein was greater in the media of differentiated vs. undifferentiated BSCs at 0, 12, 24, and 48 h. IL-6, 1L-15, FNDC5, and BDNF are expressed in association with BSC differentiation, and CTRP15 appears to be expressed in association with BSC proliferation. This study also confirms IL-6, IL-15, CTRP15, and BDNF proteins present in media collected from primary cultures of BSCs.

3.
Biology (Basel) ; 12(3)2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36979138

RESUMO

Research suggests that androgens increase skeletal muscle growth by modulating polyamine biosynthesis. As such, the objective of this study was to investigate effects of anabolic hormones, polyamine precursors, and polyamines relative to proliferation, protein synthesis, and the abundance of mRNA involved in polyamine biosynthesis, proliferation, and protein synthesis in C2C12 and Sol8 cells. Cultures were treated with anabolic hormones (trenbolone acetate and/or estradiol), polyamine precursors (methionine or ornithine), or polyamines (putrescine, spermidine, or spermine). Messenger RNA was isolated 0.5 or 1, 12, or 24 h post-treatment. The cell type had no effect (p > 0.10) on proliferation, protein synthesis, or mRNA abundance at any time point. Each treatment increased (p < 0.01) proliferation, and anabolic hormones increased (p = 0.04) protein synthesis. Polyamines increased (p < 0.05) the abundance of mRNA involved in polyamine biosynthesis, proliferation, and protein synthesis. Treatment with polyamine precursors decreased (p < 0.05) the abundance of mRNA involved in proliferation and protein synthesis. Overall, C2C12 and Sol8 myoblasts do not differ (p > 0.10) in proliferation, protein synthesis, or mRNA abundance at the time points assessed. Furthermore, anabolic hormones, polyamines, and polyamine precursors increase proliferation and protein synthesis, and polyamines and their precursors alter the abundance of mRNA involved in growth.

4.
Transl Anim Sci ; 6(3): txac111, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36172460

RESUMO

There are two main beef cattle breed types: Bos Taurus (BT) and Bos Indicus (BI). Past research has demonstrated various expected differences in growth, temperament, feeding behavior, and carcass characteristics between these breed types when administered varying levels of anabolic implant. However, little is known about the differences in expected economic returns between these cattle types. The objective of this research is to simulate and compare the expected net returns of BT, Angus (AN) steers and BI influenced, Santa Gertrudis (SG) steers, with moderate or high intensity levels of implants relative to a control with no implant. The animal performance and carcass data for this economic analysis was provided from a recent feeding experiment of AN and SG influenced steers. In the experiment, sixty steers were stratified by weight and breed in a 2 × 3 factorial design examining the two different breeds: AN (N = 38) or SG influenced (N = 22), and three implant strategies: no implant (N = 20), a moderate intensity implant protocol (d0 implant: Revalor-G, d56 implant: Revalor-IS, d112 implant: Revalor-S; n=20), or a high intensity implant protocol (d0 implant: Revalor-IS, d56 implant: Revalor-S, d112 implant: Revalor-200; N = 20). The steers performance and carcass data were used together with publicly available price and input costs data in the simulation of net returns per animal for each of the treatment groups. Results demonstrated that both moderate and high intensity implanted BT steers have higher expected net return (US$78.70/hd. and US$75.84/hd., respectively) compared to BI moderate and high intensity implanted steers (US$47.03/hd. and $6.98/hd., respectively). Stochastic efficiency analysis with respect to a function demonstrated when certainty equivalent values are constrained to those ≥US$0, only the moderate implanted BT steers would be included in the efficient set.

5.
J Anim Sci ; 100(8)2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35908782

RESUMO

Two methods that the beef cattle industry can use to improve efficiency, sustainability, and economic viability are growth promotants and crossbreeding cattle of different breed types. In the United States, over 90% of cattle receive an anabolic implant at some point during production resulting in an overall increase in skeletal muscle growth. Recent research suggests that the two main cattle breed types, Bos indicus and Bos taurus, respond differently to anabolic implants. The objective of this study was to characterize changes that occur in skeletal muscle following implanting in Bos indicus influenced steers or Bos taurus steers. Twenty steers were stratified by initial weight in a 2 × 2 factorial design examining two different breeds: Angus (AN; n = 10) or Santa Gertrudis influenced (SG; n = 10), and two implant strategies: no implant (CON; n = 10) or a combined implant containing 120 mg TBA and 24 mg E2 (IMP; n = 10; Revalor-S, Merck Animal Health). Skeletal muscle biopsies were taken from the longissimus thoracis (LT) 2 and 10 d post-implantation. The mRNA abundance of 24 genes associated with skeletal muscle growth were examined, as well as the protein expression of µ-calpain and calpastatin. Succinate dehydrogenase mRNA abundance was impacted (P = 0.05) by a breed × treatment interaction 2 d post-implanting, with SG-CON having a greater increased abundance than all other steers. A tendency for a breed × treatment interaction was observed for calpain-6 mRNA (P = 0.07), with SG-CON having greater abundance than AN-CON and SG-IMP. Additionally, calpastatin protein expression was altered (P = 0.01) by a breed × treatment interaction, with SG-CON and SG-IMP steers having increased expression (P = 0.01) compared with AN-CON steers. At 2 d post-implanting, a breed × treatment interaction was observed with SG-CON steers having greater (P = 0.05) mRNA abundance of mitogen-activated protein kinase compared with AN-CON steers. Furthermore, breed affected (P = 0.05) calpastatin abundance with AN steers having increased (P = 0.05) abundance 2 d post-implanting compared with SG steers. Meanwhile, implants tended to affect (P = 0.09) muscle RING finger protein-1 mRNA abundance, with CON steers having increased (P = 0.09) abundance compared with that of IMP steers. These findings suggest that cattle breed type and anabolic implants impact calpastatin expression and mRNA abundance associated with protein turnover in the LT of feedlot steers 2 and 10 d post-implantation.


Two methods that the beef cattle industry can use to potentially improve efficiency, sustainability, and economic viability are growth promotants and crossbreeding cattle of different breed types. In the United States, over 90% of cattle receive at least one anabolic implant during the production cycle resulting in improvements in production and overall economic and environmental sustainability. Research suggests that the two main cattle breed types, Bos indicus and Bos taurus, respond differently to different anabolic implant strategies. The objective of this study was to characterize changes that occur in the skeletal muscle following implanting in Bos indicus influenced animals and Bos taurus animals. This research measured mRNA abundance of 24 genes associated with skeletal muscle growth, and protein expression of calpain-1 and calpastatin. The findings of this research suggest that anabolic implants and cattle breed type interact to cause changes in mRNA abundance in the longissimus thoracis that are related to protein turnover of skeletal muscle. Furthermore, calpastatin protein abundance was also altered by this breed × treatment interaction. This research demonstrates that anabolic implants cause molecular changes in skeletal muscle of feedlot steers, with some of these changes being breed dependent.


Assuntos
Calpaína , Acetato de Trembolona , Animais , Proteínas de Ligação ao Cálcio/genética , Calpaína/metabolismo , Bovinos , Músculo Esquelético/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
6.
Animals (Basel) ; 11(7)2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34209116

RESUMO

Fifty Angus-sired steers were utilized to evaluate the effects of anabolic implants varying in hormone type and concentration on performance, carcass traits, and plasma and liver trace mineral concentrations over 129 d. Steers were stratified by weight into one of four (n = 12 or 13/treatment) implant treatments: (1) estradiol (E2; 25.7 mg E2; Compudose, Elanco Animal Health, Greenfield, IN, USA), (2) trenbolone acetate (TBA; 200 mg TBA; Finaplix-H, Merck Animal Health, Madison, NJ, USA), (3) combination implant (ETBA; 120 mg TBA + 24 mg E2; Revalor-S, Merck Animal Health), or (4) no implant (CON). Steers were randomly assigned to pens equipped with GrowSafe bunks and fed a corn and barley-based finishing ration. Overall average daily gain and body weight were greater for ETBA and TBA than CON (p ≤ 0.04), but not E2 (p ≥ 0.12). Feed efficiency and hot carcass weight were only greater than CON for ETBA (p ≤ 0.03). Plasma and d 2 liver Zn concentrations were lesser for ETBA than CON (p ≤ 0.01) and d 10 liver Mn was lesser (p = 0.0003) for TBA than CON. These data indicate that implants containing TBA influence growth and trace mineral parameters, though more work investigating this relationship is necessary.

7.
Domest Anim Endocrinol ; 77: 106633, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34116428

RESUMO

Introducing Bos indicus (BI) genetics into a beef herd has the potential to increase environmental sustainability. When introducing BI genetics, there are concerns regarding negative impacts on temperament, growth, and carcass characteristics. Implants are routinely used in the United States, with majority of cattle on feed receiving an anabolic implant to improve growth and efficiency, however research regarding the interaction between cattle breed type and anabolic implants is limited. This research compared the use of implants in BI influenced animals versus Bos taurus in a feedlot setting. Twenty steers were stratified by initial weight in a 2 × 2 factorial design examining two different breeds: Angus (AN; n = 10) or Santa Gertrudis influenced (SG; n = 10), and two implant strategies: no implant (CON; n = 10) or a combined implant containing 120 mg TBA and 24 mg E2 (IMP; n = 10; Revalor-S, Merck Animal Health). We hypothesized that anabolic implants would improve growth and feedlot performance of BI influenced animals. Steers were randomly placed into covered pens equipped with GrowSafe bunks and fed the same ration for 129 d. Steers were weighed every 28 d. Dry matter intake, feeding behavior, and carcass data of the steers was collected. Blood was collected and harvested as serum on d 0, 2, 10, 28 and every 28 d after that, and analyzed for serum urea nitrogen (SUN), haptoglobin, and 25HydroxyVitamin D. Angus steers tended to gain more (P = 0.06) weight than SG, while IMP tended to gain more (P = 0.10) weight than CON with no breed × treatment interaction observed (P > 0.10). A breed × treatment interaction was observed when analyzing SUN (P = 0.05) and haptoglobin (P = 0.02) concentrations. Serum 25HydroxyVitmain D concentrations tended to be increased (P = 0.09) in SG-IMP steers compared to SG-CON steers. Angus steers tended (P = 0.10) to have greater amounts of marbling compared to SG steers, while SG steers had improved (P = 0.04) yield grade. Economic return was decreased by $46 a head when introducing SG genetics, while implanting steers improved economic return by $46 a head. This research provides evidence suggesting that BI influenced animals may respond differently to anabolic implants when compared to BT animals. Economic analyses demonstrate that anabolic implants improve economic return to beef producers, while introducing SG genetics decreases economic return in animals raised in more temperate climates.


Assuntos
Composição Corporal , Comportamento Alimentar , Ração Animal/análise , Animais , Nitrogênio da Ureia Sanguínea , Bovinos/genética
8.
Animals (Basel) ; 11(3)2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33801966

RESUMO

Emerging research suggests that hormones found in anabolic implants interact with polyamine biosynthesis. The objective of this study was to determine the effects of steroidal hormones, polyamines and polyamine precursors on bovine satellite cell (BSC) differentiation and polyamine biosynthesis temporally. Primary BSCs were induced to differentiate in 3% horse serum (CON) and treated with 10 nM trenbolone acetate (TBA), 10 nM estradiol (E2), 10 nM TBA and 10 nM E2, 10 mM methionine, 8 mM ornithine, 2 mM putrescine, 1.5 mM spermidine, or 0.5 mM spermine. Total mRNA was isolated 0, 2, 4, 8, 12, 24, and 48 h post-treatment. Abundance of mRNA for genes associated with induction of BSC differentiation: paired box transcription factor 7, myogenic factor 5, and myogenic differentiation factor 1 and genes in the polyamine biosynthesis pathway: ornithine decarboxylase and S-adenosylmethionine-were analyzed. Overall, steroidal hormones did not impact (p > 0.05) mRNA abundance of genes involved in BSC differentiation, but did alter (p = 0.04) abundance of genes involved in polyamine biosynthesis. Polyamine precursors influenced (p < 0.05) mRNA of genes involved in BSC differentiation. These results indicate that polyamine precursors and polyamines impact BSC differentiation and abundance of mRNA involved in polyamine biosynthesis, while steroidal hormones altered the mRNA involved in polyamine biosynthesis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...