Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Build Simul ; 14(5): 1511-1523, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33649710

RESUMO

Indoor air dynamics and quality in high density residential buildings can be complex as it is affected by both building parameters, pollution sources, and outdoor meteorological conditions. The present study used CONTAM simulations to investigate the intra-building transport and concentration of an inert pollutant continuously emitted from an underground garage of a 15-floor building under moderate Mediterranean weather. The effects of outdoor meteorological conditions (air temperature, wind speed and direction) on indoor distribution of the emitted pollutant was tested under constant conditions. The importance of using actual transient meteorological data and the impact of their temporal resolution on calculated concentrations and exposure levels were also investigated. Vertical profiles of air exchange rate (AER) and CO concentration were shown to be sensitive to indoor-outdoor temperature difference, which controls the extent of the stack effect and its importance relative to wind effect. Even under constant conditions, transient mode simulations revealed that the time needed for pollutant distribution to reach steady state can be quite long (>24h in some cases). The temporal resolution (1h vs. 8h) of the meteorological data input was also found to impact calculated exposure levels, in an extent that varied with time, meteorological conditions and apartment position.

2.
Environ Sci Process Impacts ; 19(2): 87-100, 2017 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-28186210

RESUMO

Vapor intrusion (VI) is well-known to be difficult to characterize because indoor air (IA) concentrations exhibit considerable temporal and spatial variability in homes throughout impacted communities. To overcome this and other limitations, most VI science has focused on subsurface processes; however there is a need to understand the role of aboveground processes, especially building operation, in the context of VI exposure risks. This tutorial review focuses on building air exchange rates (AERs) and provides a review of literature related building AERs to inform decision making at VI sites. Commonly referenced AER values used by VI regulators and practitioners do not account for the variability in AER values that have been published in indoor air quality studies. The information presented herein highlights that seasonal differences, short-term weather conditions, home age and air conditioning status, which are well known to influence AERs, are also likely to influence IA concentrations at VI sites. Results of a 3D VI model in combination with relevant AER values reveal that IA concentrations can vary more than one order of magnitude due to air conditioning status and one order of magnitude due to house age. Collectively, the data presented strongly support the need to consider AERs when making decisions at VI sites.


Assuntos
Movimentos do Ar , Poluição do Ar em Ambientes Fechados , Modelos Teóricos , Tomada de Decisões , Gases , Habitação
3.
Rev Environ Health ; 32(1-2): 27-33, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-27837600

RESUMO

Vapor intrusion (VI) is a term used to describe indoor air (IA) contamination that occurs due to the migration of chemical vapors in the soil and groundwater. The overall vapor transport process depends on several factors such as contaminant source characteristics, subsurface conditions, building characteristics, and general site conditions. However, the classic VI conceptual model does not adequately account for the physics of airflow around and inside a building and does not account for chemical emissions from alternative "preferential" pathways (e.g. sewers and other utility connections) into IA spaces. This mini-review provides information about recent research related to building air exchange rates (AERs) and alternative pathways to improve the accuracy of VI exposure risk assessment practices. First, results from a recently published AER study for residential homes across the United States (US) are presented and compared to AERs recommended by the US Environmental Protection Agency (USEPA). The comparison shows considerable differences in AERs when season, location, building age, and other factors are considered. These differences could directly impact VI assessments by influencing IA concentration measurements. Second, a conceptual model for sewer gas entry into buildings is presented and a summary of published field studies is reported. The results of the field studies suggest that alternative pathways for vapors to enter indoor spaces warrant consideration. Ultimately, the information presented in this mini-review can be incorporated into a multiple-lines-of-evidence approach for assessing site-specific VI exposure risks.


Assuntos
Poluição do Ar em Ambientes Fechados/análise , Monitoramento Ambiental/métodos , Medição de Risco/métodos , Estados Unidos
4.
Environ Sci Technol ; 45(6): 2144-9, 2011 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-21319734

RESUMO

Diurnal variations in diazinon volatilization were monitored in three field experiments conducted with differing soil moisture contents. The highest flux rates in all experiments were recorded just after diazinon application, but the magnitudes of those initial rates differed according to the soil moisture content, with wetter soil producing a higher rate: 5.6 × 10(-4) µg cm(-2) min(-1) for initial soil moisture above field capacity, 8.3 × 10(-5) µg cm(-2) min(-1) for initial soil moisture at field capacity, and 2.5 × 10(-5) µg cm(-2) min(-1) for initially very dry soil. Volatilization decreased during the first day in the two experiments with initially wet soils but remained relatively constant in the experiment with initially dry soil. The volatilization rate during the first night for the wettest soil remained about an order-of-magnitude higher than that observed for driest soil. When the surface dried in the experiment conducted at the intermediate water content, the volatilization rate and temporal pattern transitioned and became similar to that observed for the initially dry soil. Around noon of the second day, a daily maximum value was observed in the volatilization rate for wet soil, whereas a minimum value was observed for the dry soil, resulting in an order-of magnitude difference. This study demonstrates the importance of soil moisture on emissions of pesticides to the atmosphere.


Assuntos
Poluentes Atmosféricos/química , Diazinon/química , Inseticidas/química , Solo/química , Poluentes Atmosféricos/análise , Diazinon/análise , Inseticidas/análise , Resíduos de Praguicidas/análise , Resíduos de Praguicidas/química , Estações do Ano , Volatilização
5.
J Environ Qual ; 31(6): 1774-81, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12469825

RESUMO

Chambers are commonly used to measure the emission of many trace gases and chemicals from soil. An aerodynamic (flow through) chamber was designed and fabricated to accurately measure the surface flux of trace gases. Flow through the chamber was controlled with a small vacuum at the outlet. Due to the design using fans, a partition plate, and aerodynamic ends, air is forced to sweep parallel and uniform over the entire soil surface. A fraction of the air flowing inside the chamber is sampled in the outlet. The air velocity inside the chamber is controlled by fan speed and outlet suction flow rate. The chamber design resulted in a uniform distribution of air velocity at the soil surface. Steady state flux was attained within 5 min when the outlet air suction rate was 20 L/min or higher. For expected flux rates, the presence of the chamber did not affect the measured fluxes at outlet suction rates of around 20 L/min, except that the chamber caused some cooling of the surface in field experiments. Sensitive measurements of the pressure deficit across the soil layer in conjunction with measured fluxes in the source box and chamber outlet show that the outflow rate must be controlled carefully to minimize errors in the flux measurements. Both over- and underestimation of the fluxes are possible if the outlet flow rate is not controlled carefully. For this design, the chamber accurately measured steady flux at outlet air suction rates of approximately 20 L/min when the pressure deficit within the chamber with respect to the ambient atmosphere ranged between 0.46 and 0.79 Pa.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental/instrumentação , Modelos Teóricos , Movimentos do Ar , Desenho de Equipamento , Gases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...