Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 313
Filtrar
1.
Neuro Oncol ; 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39212325

RESUMO

Meningiomas are the most frequent primary intracranial tumors. Hence, they constitute a major share of diagnostic specimens in neuropathology practice. The 2021 WHO Classification of Central Nervous System Tumors ("CNS5") has introduced the first molecular grading parameters for meningioma with oncogenic variants in the TERT promoter and homozygous deletion of CDKN2A/B as markers for CNS WHO grade 3. However, after publication of the new classification volume, clarifications were requested, not only on novel but also on long-standing questions in meningioma grading that were beyond the scope of the WHO "blue book". In addition, more recent research into possible new molecular grading parameters could not yet be implemented in the 2021 classification but constitute a compelling body of literature. Hence, the cIMPACT-NOW Steering Committee convened a working group to provide such clarification and assess the evidence of possible novel molecular criteria. As a result, this cIMPACT-NOW update provides guidance for more standardized morphological evaluation and interpretation, most prominently pertaining to brain invasion, identifies scenarios in which advanced molecular testing is recommended, proposes to assign CNS WHO grade 2 for cases with CNS WHO grade 1 morphology but chromosomal arm 1p deletion in combination with 22q deletion and/or NF2 oncogenic variants, and discusses areas in which the current evidence is not yet sufficient to result in new recommendations.

2.
Lancet Oncol ; 25(9): e404-e419, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39214112

RESUMO

Glioma resection is associated with prolonged survival, but neuro-oncological trials have frequently refrained from quantifying the extent of resection. The Response Assessment in Neuro-Oncology (RANO) resect group is an international, multidisciplinary group that aims to standardise research practice by delineating the oncological role of surgery in diffuse adult-type gliomas as defined per WHO 2021 classification. Favourable survival effects of more extensive resection unfold over months to decades depending on the molecular tumour profile. In tumours with a more aggressive natural history, supramaximal resection might correlate with additional survival benefit. Weighing the expected survival benefits of resection as dictated by molecular tumour profiles against clinical factors, including the introduction of neurological deficits, we propose an algorithm to estimate the oncological effects of surgery for newly diagnosed gliomas. The algorithm serves to select patients who might benefit most from extensive resection and to emphasise the relevance of quantifying the extent of resection in clinical trials.


Assuntos
Neoplasias Encefálicas , Glioma , Organização Mundial da Saúde , Humanos , Glioma/cirurgia , Glioma/patologia , Glioma/classificação , Glioma/mortalidade , Neoplasias Encefálicas/cirurgia , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/classificação , Neoplasias Encefálicas/mortalidade , Algoritmos , Adulto , Procedimentos Neurocirúrgicos/efeitos adversos , Resultado do Tratamento
3.
J Neurooncol ; 169(3): 613-623, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38985431

RESUMO

PURPOSE: Brain metastases represent the most common intracranial tumors in adults and are associated with a poor prognosis. We used a personalized in vitro drug screening approach to characterize individual therapeutic vulnerabilities in brain metastases. METHODS: Short-term cultures of cancer cells isolated from brain metastasis patients were molecularly characterized using next-generation sequencing and functionally evaluated using high-throughput in vitro drug screening to characterize pharmacological treatment sensitivities. RESULTS: Next-generation sequencing identified matched genetic alterations in brain metastasis tissue samples and corresponding short-term cultures, suggesting that short-term cultures of brain metastases are suitable models for recapitulating the genetic profile of brain metastases that may determine their sensitivity to anti-cancer drugs. Employing a high-throughput in vitro drug screening platform, we successfully screened the cultures of five brain metastases for response to 267 anticancer compounds and related drug response to genetic data. Among others, we found that targeted treatment with JAK3, HER2, or FGFR3 inhibitors showed anti-cancer effects in individual brain metastasis cultures. CONCLUSION: Our preclinical study provides a proof-of-concept for combining molecular profiling with in vitro drug screening for predictive evaluation of therapeutic vulnerabilities in brain metastasis patients. This approach could advance the use of patient-derived cancer cells in clinical practice and might eventually facilitate decision-making for personalized drug treatment.


Assuntos
Antineoplásicos , Neoplasias Encefálicas , Humanos , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/secundário , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/genética , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Células Tumorais Cultivadas , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Feminino , Masculino , Pessoa de Meia-Idade , Ensaios de Triagem em Larga Escala/métodos
4.
Neuro Oncol ; 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38912846

RESUMO

The 2016 and 2021 World Health Organization (WHO) 2021 Classification of Central Nervous System (CNS) tumors have resulted in a major improvement of the classification of IDH-mutant gliomas. With more effective treatments many patients experience prolonged survival . However, treatment guidelines are often still based on information from historical series comprising both patients with IDHwt and IDH mutant tumors. They provide recommendations for radiotherapy and chemotherapy for so-called high-risk patients, usually based on residual tumor after surgery and age over 40. More up-to-date studies give a better insight into clinical, radiological and molecular factors associated with outcome of patients with IDH-mutant glioma. These insights should be used today for risk stratification and for treatment decisions. In many patients with an IDH-mutant grade 2 and grade 3 glioma, if carefully monitored postponing radiotherapy and chemotherapy is safe, and will not jeopardize overall outcome of patients. With the INDIGO trial showing patient benefit from the IDH inhibitor vorasidenib, there is a sizable population in which it seems reasonable to try this class of agents before recommending radio-chemotherapy with its delayed adverse event profile affecting quality of survival. Ongoing trials should help to further identify the patients that are benefiting from this treatment.

5.
Nat Commun ; 15(1): 4083, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38744825

RESUMO

Energetic stress compels cells to evolve adaptive mechanisms to adjust their metabolism. Inhibition of mTOR kinase complex 1 (mTORC1) is essential for cell survival during glucose starvation. How mTORC1 controls cell viability during glucose starvation is not well understood. Here we show that the mTORC1 effectors eukaryotic initiation factor 4E binding proteins 1/2 (4EBP1/2) confer protection to mammalian cells and budding yeast under glucose starvation. Mechanistically, 4EBP1/2 promote NADPH homeostasis by preventing NADPH-consuming fatty acid synthesis via translational repression of Acetyl-CoA Carboxylase 1 (ACC1), thereby mitigating oxidative stress. This has important relevance for cancer, as oncogene-transformed cells and glioma cells exploit the 4EBP1/2 regulation of ACC1 expression and redox balance to combat energetic stress, thereby supporting transformation and tumorigenicity in vitro and in vivo. Clinically, high EIF4EBP1 expression is associated with poor outcomes in several cancer types. Our data reveal that the mTORC1-4EBP1/2 axis provokes a metabolic switch essential for survival during glucose starvation which is exploited by transformed and tumor cells.


Assuntos
Acetil-CoA Carboxilase , Proteínas Adaptadoras de Transdução de Sinal , Proteínas de Ciclo Celular , Sobrevivência Celular , Ácidos Graxos , Glucose , Alvo Mecanístico do Complexo 1 de Rapamicina , Animais , Humanos , Camundongos , Acetil-CoA Carboxilase/metabolismo , Acetil-CoA Carboxilase/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Fatores de Iniciação em Eucariotos/metabolismo , Fatores de Iniciação em Eucariotos/genética , Ácidos Graxos/metabolismo , Glucose/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , NADP/metabolismo , Estresse Oxidativo , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , Biossíntese de Proteínas
6.
Nat Rev Dis Primers ; 10(1): 33, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724526

RESUMO

Gliomas are primary brain tumours that are thought to develop from neural stem or progenitor cells that carry tumour-initiating genetic alterations. Based on microscopic appearance and molecular characteristics, they are classified according to the WHO classification of central nervous system (CNS) tumours and graded into CNS WHO grades 1-4 from a low to high grade of malignancy. Diffusely infiltrating gliomas in adults comprise three tumour types with distinct natural course of disease, response to treatment and outcome: isocitrate dehydrogenase (IDH)-mutant and 1p/19q-codeleted oligodendrogliomas with the best prognosis; IDH-mutant astrocytomas with intermediate outcome; and IDH-wild-type glioblastomas with poor prognosis. Pilocytic astrocytoma is the most common glioma in children and is characterized by circumscribed growth, frequent BRAF alterations and favourable prognosis. Diffuse gliomas in children are divided into clinically indolent low-grade tumours and high-grade tumours with aggressive behaviour, with histone 3 K27-altered diffuse midline glioma being the leading cause of glioma-related death in children. Ependymal tumours are subdivided into biologically and prognostically distinct types on the basis of histology, molecular biomarkers and location. Although surgery, radiotherapy and alkylating agent chemotherapy are the mainstay of glioma treatment, individually tailored strategies based on tumour-intrinsic dominant signalling pathways have improved outcome in subsets of patients.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Glioma/genética , Glioma/fisiopatologia , Glioma/terapia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/fisiopatologia , Prognóstico , Criança , Isocitrato Desidrogenase/genética , Mutação
8.
Front Oncol ; 14: 1342114, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38357209

RESUMO

The methylation status of the O6-methylguanine DNA methyltransferase (MGMT) promoter region is a critical predictor of response to alkylating agents in glioblastoma. However, current approaches to study the MGMT status focus on analyzing models with non-identical backgrounds. Here, we present an epigenetic editing approach using CRISPRoff to introduce site-specific CpG methylation in the MGMT promoter region of glioma cell lines. Sanger sequencing revealed successful introduction of methylation, effectively generating differently methylated glioma cell lines with an isogenic background. The introduced methylation resulted in reduced MGMT mRNA and protein levels. Furthermore, the cell lines with MGMT promoter region methylation exhibited increased sensitivity to temozolomide, consistent with the impact of methylation on treatment outcomes in patients with glioblastoma. This precise epigenome-editing approach provides valuable insights into the functional relevance of MGMT promoter regional methylation and its potential for prognostic and predictive assessments, as well as epigenetic-targeted therapies.

9.
Acta Neuropathol ; 147(1): 11, 2024 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-38183430

RESUMO

Prognostic factors and standards of care for astrocytoma, isocitrate dehydrogenase (IDH)-mutant, CNS WHO grade 4, remain poorly defined. Here we sought to explore disease characteristics, prognostic markers, and outcome in patients with this newly defined tumor type. We determined molecular biomarkers and assembled clinical and outcome data in patients with IDH-mutant astrocytomas confirmed by central pathology review. Patients were identified in the German Glioma Network cohort study; additional cohorts of patients with CNS WHO grade 4 tumors were identified retrospectively at two sites. In total, 258 patients with IDH-mutant astrocytomas (114 CNS WHO grade 2, 73 CNS WHO grade 3, 71 CNS WHO grade 4) were studied. The median age at diagnosis was similar for all grades. Karnofsky performance status at diagnosis inversely correlated with CNS WHO grade (p < 0.001). Despite more intensive treatment upfront with higher grade, CNS WHO grade was strongly prognostic: median overall survival was not reached for grade 2 (median follow-up 10.4 years), 8.1 years (95% CI 5.4-10.8) for grade 3, and 4.7 years (95% CI 3.4-6.0) for grade 4. Among patients with CNS WHO grade 4 astrocytoma, median overall survival was 5.5 years (95% CI 4.3-6.7) without (n = 58) versus 1.8 years (95% CI 0-4.1) with (n = 12) homozygous CDKN2A deletion. Lower levels of global DNA methylation as detected by LINE-1 methylation analysis were strongly associated with CNS WHO grade 4 (p < 0.001) and poor outcome. MGMT promoter methylation status was not prognostic for overall survival. Histomolecular stratification based on CNS WHO grade, LINE-1 methylation level, and CDKN2A status revealed four subgroups of patients with significantly different outcomes. In conclusion, CNS WHO grade, global DNA methylation status, and CDKN2A homozygous deletion are prognostic in patients with IDH-mutant astrocytoma. Combination of these parameters allows for improved prediction of outcome. These data aid in designing upcoming trials using IDH inhibitors.


Assuntos
Astrocitoma , Isocitrato Desidrogenase , Humanos , Astrocitoma/genética , Astrocitoma/terapia , Estudos de Coortes , Homozigoto , Isocitrato Desidrogenase/genética , Prognóstico , Estudos Retrospectivos , Deleção de Sequência
10.
Cancer Res ; 84(5): 741-756, 2024 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-38117484

RESUMO

Tumor adaptation or selection is thought to underlie therapy resistance in glioma. To investigate longitudinal epigenetic evolution of gliomas in response to therapeutic pressure, we performed an epigenomic analysis of 132 matched initial and recurrent tumors from patients with IDH-wildtype (IDHwt) and IDH-mutant (IDHmut) glioma. IDHwt gliomas showed a stable epigenome over time with relatively low levels of global methylation. The epigenome of IDHmut gliomas showed initial high levels of genome-wide DNA methylation that was progressively reduced to levels similar to those of IDHwt tumors. Integration of epigenomics, gene expression, and functional genomics identified HOXD13 as a master regulator of IDHmut astrocytoma evolution. Furthermore, relapse of IDHmut tumors was accompanied by histologic progression that was associated with survival, as validated in an independent cohort. Finally, the initial cell composition of the tumor microenvironment varied between IDHwt and IDHmut tumors and changed differentially following treatment, suggesting increased neoangiogenesis and T-cell infiltration upon treatment of IDHmut gliomas. This study provides one of the largest cohorts of paired longitudinal glioma samples with epigenomic, transcriptomic, and genomic profiling and suggests that treatment of IDHmut glioma is associated with epigenomic evolution toward an IDHwt-like phenotype. SIGNIFICANCE: Standard treatments are related to loss of DNA methylation in IDHmut glioma, resulting in epigenetic activation of genes associated with tumor progression and alterations in the microenvironment that resemble treatment-naïve IDHwt glioma.


Assuntos
Neoplasias Encefálicas , Glioma , Isocitrato Desidrogenase , Humanos , Neoplasias Encefálicas/patologia , Epigênese Genética , Epigenômica , Glioma/patologia , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Mutação , Recidiva Local de Neoplasia/genética , Microambiente Tumoral
11.
Eur J Cancer ; 198: 113475, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38159337

RESUMO

BACKGROUND: Zotiraciclib (TG02) is an oral multi-cyclin dependent kinase (CDK) inhibitor thought to inhibit tumor growth via CDK-9-dependent depletion of survival proteins such as c-MYC and MCL-1 which are frequently overexpressed in glioblastoma. METHODS: EORTC 1608 (NCT03224104) (STEAM) had a three parallel group (A,B,C) phase Ib, open-label, non-randomized, multicenter design in IDH wild-type newly diagnosed glioblastoma or anaplastic astrocytoma. Groups A and B explored the maximum tolerated dose (MTD) of TG02 in elderly patients, in combination with hypofractionated radiotherapy alone (group A) or temozolomide alone (group B), according to O6-methylguanine DNA methyltransferase promoter methylation status determined centrally. Group C explored single agent activity of TG02 at first relapse after temozolomide chemoradiotherapy with a primary endpoint of progression-free survival at 6 months (PFS-6). Tumor expression of CDK-9, c-MYC and MCL-1 was determined by immunohistochemistry. RESULTS: The MTD was 150 mg twice weekly in combination with radiotherapy alone (group A) or temozolomide alone (group B). Two dose-limiting toxicities were observed at 150 mg: one in group A (grade 3 seizure), one in group B (multiple grade 1 events). Main toxicities included neutropenia, gastrointestinal disorders and hepatotoxicity. PFS-6 in group C was 6.7%. CDK-9, c-MYC and MCL-1 were confirmed to be expressed and their expression was moderately cross-correlated. High protein levels of MCL-1 were associated with inferior survival. CONCLUSIONS: TG02 exhibits overlapping toxicity with alkylating agents and low single agent clinical activity in recurrent glioblastoma. The role of CDK-9 and its down-stream effectors as prognostic factors and therapeutic targets in glioblastoma warrants further study.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Compostos Heterocíclicos de 4 ou mais Anéis , Humanos , Idoso , Glioblastoma/tratamento farmacológico , Glioblastoma/radioterapia , Temozolomida/uso terapêutico , Dacarbazina/uso terapêutico , Proteína de Sequência 1 de Leucemia de Células Mieloides/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/radioterapia , Recidiva Local de Neoplasia/tratamento farmacológico , Inibidores Enzimáticos , Antineoplásicos Alquilantes/uso terapêutico
12.
J Neurooncol ; 165(2): 329-342, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37976029

RESUMO

PURPOSE: Primary brain tumors are a leading cause of cancer-related death in children, and medulloblastoma is the most common malignant pediatric brain tumor. The current molecular characterization of medulloblastoma is mainly based on protein-coding genes, while little is known about the involvement of long non-coding RNAs (lncRNAs). This study aimed to elucidate the role of the lncRNA OTX2-AS1 in medulloblastoma. METHODS: Analyses of DNA copy number alterations, methylation profiles, and gene expression data were used to characterize molecular alterations of OTX2-AS1 in medulloblastoma tissue samples. In vitro analyses of medulloblastoma cell models and orthotopic in vivo experiments were carried out for functional characterization of OTX2-AS1. High-throughput drug screening was employed to identify pharmacological inhibitors, while proteomics and metabolomics analyses were performed to address potential mechanisms of drug action. RESULTS: We detected amplification and consecutive overexpression of OTX2 and OTX2-AS1 in a subset of medulloblastomas. In addition, OTX2-AS1 promoter methylation was linked to OTX2-AS1 expression. OTX2-AS1 knockout reduced medulloblastoma cell viability and cell migration in vitro and prolonged survival in the D283 orthotopic medulloblastoma mouse xenograft model. Pharmacological inhibition of BCL-2 suppressed the growth of OTX2-AS1 overexpressing medulloblastoma cells in vitro. CONCLUSIONS: Our study revealed a pro-tumorigenic role of OTX2-AS1 in medulloblastoma and identified BCL-2 inhibition as a potential therapeutic approach to target OTX2-AS1 overexpressing medulloblastoma cells.


Assuntos
Neoplasias Encefálicas , Neoplasias Cerebelares , Meduloblastoma , RNA Longo não Codificante , Animais , Criança , Humanos , Camundongos , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Cerebelares/tratamento farmacológico , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/metabolismo , Regulação Neoplásica da Expressão Gênica , Meduloblastoma/patologia , Fatores de Transcrição Otx/genética , Fatores de Transcrição Otx/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , RNA Longo não Codificante/genética
13.
Lancet Oncol ; 24(11): e438-e450, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37922934

RESUMO

Surgical resection represents the standard of care for people with newly diagnosed diffuse gliomas, and the neuropathological and molecular profile of the resected tissue guides clinical management and forms the basis for research. The Response Assessment in Neuro-Oncology (RANO) consortium is an international, multidisciplinary effort that aims to standardise research practice in neuro-oncology. These recommendations represent a multidisciplinary consensus from the four RANO groups: RANO resect, RANO recurrent glioblastoma, RANO radiotherapy, and RANO/PET for a standardised workflow to achieve a representative tumour evaluation in a disease characterised by intratumoural heterogeneity, including recommendations on which tumour regions should be surgically sampled, how to define those regions on the basis of preoperative imaging, and the optimal sample volume. Practical recommendations for tissue sampling are given for people with low-grade and high-grade gliomas, as well as for people with newly diagnosed and recurrent disease. Sampling of liquid biopsies is also addressed. A standardised workflow for subsequent handling of the resected tissue is proposed to avoid information loss due to decreasing tissue quality or insufficient clinical information. The recommendations offer a framework for prospective biobanking studies.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/cirurgia , Estudos Prospectivos , Bancos de Espécimes Biológicos , Recidiva Local de Neoplasia/cirurgia , Glioma/diagnóstico por imagem , Glioma/cirurgia
14.
J Neuropathol Exp Neurol ; 82(11): 921-933, 2023 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-37740942

RESUMO

Gain-of-function mutations in isocitrate dehydrogenase (IDH) genes result in excessive production of (D)-2-hydroxyglutarate (D-2HG) which intrinsically modifies tumor cell epigenetics and impacts surrounding noncancerous cells through nonepigenetic pathways. However, whether D-2HG has a paracrine effect on endothelial cells in the tumor microenvironment needs further clarification. We quantified microvessel density by immunohistochemistry using tissue sections from 60 high-grade astrocytic gliomas with or without IDH mutation. Microvessel density was found to be reduced in tumors carrying an IDH mutation. Ex vivo experiments showed that D-2HG inhibited endothelial cell migration, wound healing, and tube formation by suppressing cell proliferation but not viability, possibly through reduced activation of the mTOR/STAT3 pathway. Further, D-2HG reduced fluorescent dextran permeability and decreased paracellular T-cell transendothelial migration by augmenting expression of junctional proteins thereby collectively increasing endothelial barrier function. These results indicate that D-2HG may influence the tumor vascular microenvironment by reducing the intratumoral vasculature density and by inhibiting the transport of metabolites and extravasation of circulating cells into the astrocytoma microenvironment. These observations provide a rationale for combining IDH inhibition with antitumor immunological/angiogenic approaches and suggest a molecular basis for resistance to antiangiogenic drugs in patients whose tumors express a mutant IDH allele.


Assuntos
Astrocitoma , Neoplasias Encefálicas , Glioma , Humanos , Glioma/genética , Neoplasias Encefálicas/patologia , Células Endoteliais/metabolismo , Encéfalo/patologia , Astrocitoma/patologia , Mutação/genética , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Proliferação de Células , Microambiente Tumoral
15.
Acta Neuropathol ; 146(4): 551-564, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37656187

RESUMO

Pilocytic astrocytoma (PA), the most common pediatric brain tumor, is driven by aberrant mitogen-activated protein kinase signaling most commonly caused by BRAF gene fusions or activating mutations. While 5-year overall survival rates exceed 95%, tumor recurrence or progression constitutes a major clinical challenge in incompletely resected tumors. Here, we used similarity network fusion (SNF) analysis in an integrative multi-omics approach employing RNA transcriptomic and mass spectrometry-based proteomic profiling to molecularly characterize PA tissue samples from 62 patients. Thereby, we uncovered that PAs segregated into two molecularly distinct groups, namely, Group 1 and Group 2, which were validated in three non-overlapping cohorts. Patients with Group 1 tumors were significantly younger and showed worse progression-free survival compared to patients with group 2 tumors. Ingenuity pathways analysis (IPA) and gene set enrichment analysis (GSEA) revealed that Group 1 tumors were enriched for immune response pathways, such as interferon signaling, while Group 2 tumors showed enrichment for action potential and neurotransmitter signaling pathways. Analysis of immune cell-related gene signatures showed an enrichment of infiltrating T Cells in Group 1 versus Group 2 tumors. Taken together, integrative multi-omics of PA identified biologically distinct and prognostically relevant tumor groups that may improve risk stratification of this single pathway driven tumor type.


Assuntos
Astrocitoma , Neoplasias Encefálicas , Criança , Humanos , Multiômica , Proteômica , Astrocitoma/genética , Neoplasias Encefálicas/genética , Potenciais de Ação
16.
J Neurooncol ; 164(2): 353-366, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37648934

RESUMO

PURPOSE: Multimodal therapies have significantly improved prognosis in glioma. However, in particular radiotherapy may induce long-term neurotoxicity compromising patients' neurocognition and quality of life. The present prospective multicenter study aimed to evaluate associations of multimodal treatment with neurocognition with a particular focus on hippocampal irradiation. METHODS: Seventy-one glioma patients (WHO grade 1-4) were serially evaluated with neurocognitive testing and quality of life questionnaires. Prior to (baseline) and following further treatment (median 7.1 years [range 4.6-11.0] after baseline) a standardized computerized neurocognitive test battery (NeuroCog FX) was applied to gauge psychomotor speed and inhibition, verbal short-term memory, working memory, verbal and non-verbal memory as well as verbal fluency. Mean ipsilateral hippocampal radiation dose was determined in a subgroup of 27 patients who received radiotherapy according to radiotherapy plans to evaluate its association with neurocognition. RESULTS: Between baseline and follow-up mean performance in none of the cognitive domains significantly declined in any treatment modality (radiotherapy, chemotherapy, combined radio-chemotherapy, watchful-waiting), except for selective attention in patients receiving chemotherapy alone. Apart from one subtest (inhibition), mean ipsilateral hippocampal radiation dose > 50 Gy (Dmean) as compared to < 10 Gy showed no associations with long-term cognitive functioning. However, patients with Dmean < 10 Gy showed stable or improved performance in all cognitive domains, while patients with > 50 Gy numerically deteriorated in 4/8 domains. CONCLUSIONS: Multimodal glioma therapy seems to affect neurocognition less than generally assumed. Even patients with unilateral hippocampal irradiation with > 50 Gy showed no profound cognitive decline in this series.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Adulto , Seguimentos , Neoplasias Encefálicas/complicações , Neoplasias Encefálicas/radioterapia , Qualidade de Vida , Estudos Prospectivos , Glioma/complicações , Glioma/radioterapia , Terapia Combinada
18.
Neuro Oncol ; 25(10): 1731-1749, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37279174

RESUMO

In the 5th edition of the WHO CNS tumor classification (CNS5, 2021), multiple molecular characteristics became essential diagnostic criteria for many additional CNS tumor types. For those tumors, an integrated, "histomolecular" diagnosis is required. A variety of approaches exists for determining the status of the underlying molecular markers. The present guideline focuses on the methods that can be used for assessment of the currently most informative diagnostic and prognostic molecular markers for the diagnosis of gliomas, glioneuronal and neuronal tumors. The main characteristics of the molecular methods are systematically discussed, followed by recommendations and information on available evidence levels for diagnostic measures. The recommendations cover DNA and RNA next-generation-sequencing, methylome profiling, and select assays for single/limited target analyses, including immunohistochemistry. Additionally, because of its importance as a predictive marker in IDH-wildtype glioblastomas, tools for the analysis of MGMT promoter methylation status are covered. A structured overview of the different assays with their characteristics, especially their advantages and limitations, is provided, and requirements for input material and reporting of results are clarified. General aspects of molecular diagnostic testing regarding clinical relevance, accessibility, cost, implementation, regulatory, and ethical aspects are discussed as well. Finally, we provide an outlook on new developments in the landscape of molecular testing technologies in neuro-oncology.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Patologia Molecular , Mutação , Glioma/diagnóstico , Glioma/genética , Glioma/patologia , Organização Mundial da Saúde
19.
Eur J Cancer ; 189: 112913, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37277265

RESUMO

BACKGROUND: Median survival with glioblastoma remains in the range of 12 months on population levels. Only few patients survive for more than 5 years. Patient and disease features associated with long-term survival remain poorly defined. METHODS: European Organization for Research and Treatment of Cancer (EORTC) 1419 (ETERNITY) is a registry study supported by the Brain Tumor Funders Collaborative in the US and the EORTC Brain Tumor Group. Patients with glioblastoma surviving at least 5 years from diagnosis were identified at 24 sites in Europe, US, and Australia. In patients with isocitrate dehydrogenase (IDH) wildtype tumours, prognostic factors were analysed using the Kaplan-Meier method and the Cox proportional hazards model. A population-based reference cohort was obtained from the Cantonal cancer registry Zurich. RESULTS: At the database lock of July 2020, 280 patients with histologically centrally confirmed glioblastoma (189 IDH wildtype, 80 IDH mutant, 11 incompletely characterised) had been registered. In the IDH wildtype population, median age was 56 years (range 24-78 years), 96 patients (50.8%) were female, 139 patients (74.3%) had tumours with O6-methylguanine DNA methyltransferase (MGMT) promoter methylation. Median overall survival was 9.9 years (95% confidence interval [95% CI] 7.9-11.9). Patients without recurrence experienced longer median survival (not reached) than patients with one or more recurrences (8.92 years) (p < 0.001) and had a high rate (48.8%) of MGMT promoter-unmethylated tumours. CONCLUSIONS: Freedom from progression is a powerful predictor of overall survival in long-term survivors with glioblastoma. Patients without relapse often have MGMT promoter-unmethylated glioblastoma and may represent a distinct subtype of glioblastoma.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Feminino , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso , Masculino , Glioblastoma/genética , Glioblastoma/terapia , Glioblastoma/patologia , Isocitrato Desidrogenase/genética , Metilação de DNA , Recidiva Local de Neoplasia/genética , Prognóstico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/diagnóstico , Metilases de Modificação do DNA/genética , Enzimas Reparadoras do DNA/genética , Estudos Retrospectivos
20.
Clin Neuropathol ; 42(3): 112-121, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36999511

RESUMO

We previously reported on the first neuropathological round robin trials operated together with Quality in Pathology (QuIP) GmbH in 2018 and 2019 in Germany, i.e., the trials on IDH mutational testing and MGMT promoter methylation analysis [1]. For 2020 and 2021, the spectrum of round robin trials has been expanded to cover the most commonly used assays in neuropathological institutions. In addition to IDH mutation and MGMT promoter methylation testing, there is a long tradition for 1p/19q codeletion testing relevant in the context of the diagnosis of oligodendroglioma. With the 5th edition of the World Health Organization (WHO) classification of the central nervous system tumors, additional molecular markers came into focus: TERT promoter mutation is often assessed as a molecular diagnostic criterion for IDH-wildtype glioblastoma. Moreover, several molecular diagnostic markers have been introduced for pediatric brain tumors. Here, trials on KIAA1549::BRAF fusions (common in pilocytic astrocytomas) and H3-3A mutations (in diffuse midline gliomas, H3-K27-altered and diffuse hemispheric gliomas, H3-G34-mutant) were most desired by the neuropathological community. In this update, we report on these novel round robin trials. In summary, success rates in all four trials ranged from 75 to 96%, arguing for an overall high quality level in the field of molecular neuropathological diagnostics.


Assuntos
Biomarcadores Tumorais , Deleção Cromossômica , Testes Genéticos , Histonas , Mutação , Proteínas de Fusão Oncogênica , Regiões Promotoras Genéticas , Telomerase , Criança , Humanos , Biomarcadores Tumorais/genética , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , Alemanha , Histonas/genética , Proteínas de Membrana/genética , Oligodendroglioma/diagnóstico , Oligodendroglioma/genética , Proteínas de Fusão Oncogênica/genética , Regiões Promotoras Genéticas/genética , Proteínas Proto-Oncogênicas B-raf/genética , Telomerase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA