Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 82(9): 096104, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21974631

RESUMO

Gas-filled capillary discharge waveguides are important structures in laser-plasma interaction applications, such as the laser wakefield accelerator. We present the methodology for applying femtosecond laser micromachining in the production of capillary channels (typically 200-300 µm in diameter and 30-40 mm in length), including the formalism for capillaries with a linearly tapered diameter. The latter is demonstrated to possess a smooth variation in diameter along the length of the capillary (tunable with the micromachining trajectories). This would lead to a longitudinal plasma density gradient in the waveguide that may dramatically improve the laser-plasma interaction efficiency in applications.

2.
Phys Rev Lett ; 105(3): 034802, 2010 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-20867771

RESUMO

All applications of high brightness ion beams depend on the possibility to precisely manipulate the trajectories of the ions or, more generally, to control their phase-space distribution. We show that the combination of a laser-cooled ion source and time-dependent acceleration fields gives new possibilities to perform precise phase-space control. We demonstrate reduction of the longitudinal energy spread and realization of a lens with control over its focal length and sign, as well as the sign of the spherical aberrations. This creates new possibilities to correct for the spherical and chromatic aberrations which are presently limiting the spatial resolution.

3.
Phys Rev Lett ; 102(3): 034802, 2009 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-19257360

RESUMO

We present time-of-flight measurements of the longitudinal energy spread of pulsed ultracold ion beams, produced by near-threshold ionization of rubidium atoms captured in a magneto-optical atom trap. Well-defined pulsed beams have been produced with energies of only 1 eV and a root-mean-square energy spread as low as 0.02 eV, 2 orders of magnitude lower than the state-of-the-art gallium liquid-metal ion source. The low energy spread is important for focused ion beam technology because it enables milling and ion-beam-induced deposition at sub-nm length scales with many ionic species, both light and heavy. In addition, we show that the slowly moving, low-energy-spread ion bunches are ideal for studying intricate space charge effects in pulsed beams. As an example, we present a detailed study of the transition from space charge dominated dynamics to ballistic motion.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...