Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 7(1): 633, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38796644

RESUMO

Tardigrades, microscopic animals that survive a broad range of environmental stresses, express a unique set of proteins termed tardigrade-specific intrinsically disordered proteins (TDPs). TDPs are often expressed at high levels in tardigrades upon desiccation, and appear to mediate stress adaptation. Here, we focus on the proteins belonging to the secreted family of tardigrade proteins termed secretory-abundant heat soluble ("SAHS") proteins, and investigate their ability to protect diverse biological structures. Recombinantly expressed SAHS proteins prevent desiccated liposomes from fusion, and enhance desiccation tolerance of E. coli and Rhizobium tropici upon extracellular application. Molecular dynamics simulation and comparative structural analysis suggest a model by which SAHS proteins may undergo a structural transition upon desiccation, in which removal of water and solutes from a large internal cavity in SAHS proteins destabilizes the beta-sheet structure. These results highlight the potential application of SAHS proteins as stabilizing molecules for preservation of cells.


Assuntos
Dessecação , Proteínas Intrinsicamente Desordenadas , Tardígrados , Tardígrados/metabolismo , Animais , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/metabolismo , Proteínas Intrinsicamente Desordenadas/genética , Simulação de Dinâmica Molecular , Escherichia coli/metabolismo , Escherichia coli/genética
2.
Biophys J ; 121(11): 2027-2034, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35527401

RESUMO

Single-molecule-enzymology (SME) methods have enabled the observation of heterogeneous catalytic activities within a single enzyme population. Heterogeneous activity is hypothesized to originate from conformational changes in the enzyme that result from changes in the local environment leading to catalytically active substates. Here, we use SME to investigate the mechanisms of heterogeneous activity exhibited by tissue nonspecific alkaline phosphatase (TNSALP), which reveals two subpopulations with different catalytic activities. We show the effect of pH and temperature on the distribution of TNSALP activity and confirm the presence of two subpopulations attributed to half- and fully active TNSALP substates. We provide mechanistic insight about protein structure using molecular dynamic simulations and show pH- and temperature-dependent conformational transitions that corroborate experimentally observed changes in TNSALP activity. These results show the utility of SME to understand heterogeneous enzyme activity and demonstrate a simple approach using pH and temperature to tune catalytic activity within an enzyme population.


Assuntos
Hipofosfatasia , Fosfatase Alcalina/química , Fosfatase Alcalina/metabolismo , Animais , Células COS , Chlorocebus aethiops
3.
ACS Cent Sci ; 5(10): 1691-1698, 2019 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-31660437

RESUMO

Hysteresis is an important feature of enzyme-catalyzed reactions, as it reflects the influence of enzyme regulation in the presence of ligands such as substrates or allosteric molecules. In typical kinetic studies of enzyme activity, hysteretic behavior is observed as a "lag" or "burst" in the time course of the catalyzed reaction. These lags and bursts are due to the relatively slow transition from one state to another state of the enzyme molecule, with different states having different kinetic properties. However, it is difficult to understand the underlying mechanism of hysteresis by observing bulk reactions because the different enzyme molecules in the population behave stochastically. In this work, we studied the hysteretic behavior of mutant ß-glucuronidase (GUS) using a high-throughput single-molecule array platform and investigated the effect of thermal treatment on the hysteresis.

4.
Proteome Sci ; 9(1): 2, 2011 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-21241510

RESUMO

We describe a method to identify metabolites of proteins that eliminates endogenous background by using stable isotope labeled matrices. This technique allows selective screening of the intact therapeutic molecule and all metabolites using a modified precursor ion scan that monitors low molecular weight fragment ions produced during MS/MS. This distinct set of low mass ions differs between isotopically labeled and natural isotope containing species allowing excellent discrimination between endogenous compounds and target analytes. All compounds containing amino acids that consist of naturally abundant isotopes can be selected using this scanning technique for further analysis, including metabolites of the parent molecule. The sensitivity and selectivity of this technique is discussed with specific examples of insulin metabolites identified within a complex matrix using a range of different validated low mass target ions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...