Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 24(26): 7927-7933, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38885648

RESUMO

In nanoscale structures with rotational symmetry, such as quantum rings, the orbital motion of electrons combined with a spin-orbit interaction can produce a very strong and anisotropic Zeeman effect. Since symmetry is sensitive to electric fields, ring-like geometries provide an opportunity to manipulate magnetic properties over an exceptionally wide range. In this work, we show that it is possible to form rotationally symmetric confinement potentials inside a semiconductor quantum dot, resulting in electron orbitals with large orbital angular momentum and strong spin-orbit interactions. We find complete suppression of Zeeman spin splitting for magnetic fields applied in the quantum dot plane, similar to the expected behavior of an ideal quantum ring. Spin splitting reappears as orbital interactions are activated with symmetry-breaking electric fields. For two valence electrons, representing a common basis for spin-qubits, we find that modulating the rotational symmetry may offer new prospects for realizing tunable protection and interaction of spin-orbital states.

2.
Nature ; 587(7835): 583-587, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33239796

RESUMO

Many-body physics describes phenomena that cannot be understood by looking only at the constituents of a system1. Striking examples are broken symmetry, phase transitions and collective excitations2. To understand how such collective behaviour emerges as a system is gradually assembled from individual particles has been a goal in atomic, nuclear and solid-state physics for decades3-6. Here we observe the few-body precursor of a quantum phase transition from a normal to a superfluid phase. The transition is signalled by the softening of the mode associated with amplitude vibrations of the order parameter, usually referred to as a Higgs mode7. We achieve fine control over ultracold fermions confined to two-dimensional harmonic potentials and prepare closed-shell configurations of 2, 6 and 12 fermionic atoms in the ground state with high fidelity. Spectroscopy is then performed on our mesoscopic system while tuning the pair energy from zero to a value larger than the shell spacing. Using full atom counting statistics, we find the lowest resonance to consist of coherently excited pairs only. The distinct non-monotonic interaction dependence of this many-body excitation, combined with comparison with numerical calculations allows us to identify it as the precursor of the Higgs mode. Our atomic simulator provides a way to study the emergence of collective phenomena and the thermodynamic limit, particle by particle.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...