Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; 7(3): 407-14, 2011 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-21294271

RESUMO

Herein is reported the synthesis of ordered mesoporous α-Fe(2)O(3) thin films produced through coassembly strategies using a poly(ethylene-co-butylene)-block-poly(ethylene oxide) diblock copolymer as the structure-directing agent and hydrated ferric nitrate as the molecular precursor. The sol-gel derived α-Fe(2)O(3) materials are highly crystalline after removal of the organic template and the nanoscale porosity can be retained up to annealing temperatures of 600 °C. While this paper focuses on the characterization of these materials using various state-of-the-art techniques, including grazing-incidence small-angle X-ray scattering, time-of-flight secondary ion mass spectrometry, X-ray photoelectron spectroscopy, and UV-vis and Raman spectroscopy, the electrochemical properties are also examined and it is demonstrated that mesoporous α-Fe(2)O(3) thin-film electrodes not only exhibit enhanced lithium-ion storage capabilities compared to bulk materials but also show excellent cycling stabilities by suppressing the irreversible phase transformations that are observed in microcrystalline α-Fe(2)O(3).


Assuntos
Fontes de Energia Elétrica , Lítio/química , Nanopartículas/química , Eletroquímica , Eletrodos , Nanotecnologia , Porosidade
2.
Sci Technol Adv Mater ; 12(2): 025005, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27877387

RESUMO

We present a versatile method for the preparation of mesoporous tin-doped indium oxide (ITO) thin films via dip-coating. Two poly(isobutylene)-b-poly(ethyleneoxide) (PIB-PEO) copolymers of significantly different molecular weight (denoted as PIB-PEO 3000 and PIB-PEO 20000) are used as templates and are compared with non-templated films to clarify the effect of the template size on the crystallization and, thus, on the electrochemical properties of mesoporous ITO films. Transparent, mesoporous, conductive coatings are obtained after annealing at 500 °C; these coatings have a specific resistance of 0.5 Ω cm at a thickness of about 100 nm. Electrical conductivity is improved by one order of magnitude by annealing under a reducing atmosphere. The two types of PIB-PEO block copolymers create mesopores with in-plane diameters of 20-25 and 35-45 nm, the latter also possessing correspondingly thicker pore walls. Impedance measurements reveal that the conductivity is significantly higher for films prepared with the template generating larger mesopores. Because of the same size of the primary nanoparticles, the enhanced conductivity is attributed to a higher conduction path cross section. Prussian blue was deposited electrochemically within the films, thus confirming the accessibility of their pores and their functionality as electrode material.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...