Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 34(23): e2201469, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35426187

RESUMO

Gallium-based liquid metal nonspherical droplets (plugs) have seen increasing demand recently mainly because their high aspect ratios make them beneficial for a wide range of applications, including microelectromechanical systems (MEMS), microfluidics, sensor technology, radio-frequency devices, actuators, and switches. However, reproducibility of the generation of such plugs, as well as precise control over their size, is yet challenging. In this work, a simple on-chip liquid metal plug generator using a commercially available 3D microprinter is presented and the plug generator in poly(dimethylsiloxane) is replicated via soft lithography. Liquid metal plugs are generated via a combination of electrochemical oxidation, design of well-defined constrictions based on Laplace pressure, and the application of modulated voltage control signals. It is shown that plugs of various aspect ratios can be generated reproducibly for channel widths of 0.5, 0.8, and 1.5 mm with constriction widths of 0.1 mm at 6 V. Laplace-pressure-controlled plugs in constricted channels are compared to modulated-voltage-generated plugs in straight channels showing that this technique provides significantly enhanced reproducibility and control over the size and spacing between the plugs. This work paves the way to sub-millimeter liquid metal plugs generated directly on-chip for on-demand MEMS and microfluidic applications.

2.
Micromachines (Basel) ; 12(11)2021 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-34832759

RESUMO

Polystyrene (PS) is one of the most commonly used thermoplastic materials worldwide and plays a ubiquitous role in today's biomedical and life science industry and research. The main advantage of PS lies in its facile processability, its excellent optical and mechanical properties, as well as its biocompatibility. However, PS is only rarely used in microfluidic prototyping, since the structuring of PS is mainly performed using industrial-scale replication processes. So far, microfluidic chips in PS have not been accessible to rapid prototyping via 3D printing. In this work, we present, for the first time, 3D printing of transparent PS using fused deposition modeling (FDM). We present FDM printing of transparent PS microfluidic channels with dimensions as small as 300 µm and a high transparency in the region of interest. Furthermore, we demonstrate the fabrication of functional chips such as Tesla-mixer and mixer cascades. Cell culture experiments showed a high cell viability during seven days of culturing, as well as enabling cell adhesion and proliferation. With the aid of this new PS prototyping method, the development of future biomedical microfluidic chips will be significantly accelerated, as it enables using PS from the early academic prototyping all the way to industrial-scale mass replication.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...