Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 17(5): e0268902, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35613094

RESUMO

The western corn rootworm (WCR), Diabrotica virgifera virgifera LeConte, is an economically important pest of field corn (Zea mays L.) across the United States (U.S.) Corn Belt. Repeated use of transgenic hybrids expressing Bacillus thuringiensis (Bt) proteins has selected for field-evolved resistance to all current rootworm-active Bt proteins. The newest product available for WCR management is SmartStax® PRO, a rootworm-active pyramid containing Cry3Bb1, Cry34/35Ab1 [now reclassified as Gpp34Ab1/Tpp35Ab1] and a new mode of action, DvSnf7 dsRNA. Understanding the fitness of adult WCR after dietary exposure to SmartStax® PRO will identify potential impacts on WCR population dynamics and inform efforts to optimize resistance management strategies. Therefore, the objective of the present study was to characterize the effect of SmartStax® PRO dietary exposure on WCR life history traits. Adult WCR were collected during 2018 and 2019 from emergence tents placed over replicated field plots of SmartStax® PRO or non-rootworm Bt corn at a site with a history of rootworm-Bt trait use and suspected resistance to Cry3Bb1 and Cry34/35Ab1. Adult survival was reduced by 97.1-99.7% in SmartStax® PRO plots relative to the non-rootworm Bt corn plots during the study. Individual male/female pairs were fed different diets of ear tissue to simulate lifetime or adult exposure. Life history parameters measured included adult longevity, adult head capsule width, lifetime female egg production, and egg viability. Results indicate that lifetime or adult exposure to SmartStax® PRO significantly reduced adult longevity and lifetime egg production. Larval exposure to SmartStax® PRO significantly reduced WCR adult size. Results from this study collectively suggest that SmartStax® PRO may negatively impact WCR life history traits, which may lead to reduced population growth when deployed in an area with WCR resistance to Bt traits.


Assuntos
Bacillus thuringiensis , Besouros , Características de História de Vida , Animais , Bacillus thuringiensis/genética , Proteínas de Bactérias/genética , Besouros/genética , Exposição Dietética , Endotoxinas/genética , Feminino , Resistência a Inseticidas/genética , Larva , Controle Biológico de Vetores , Plantas Geneticamente Modificadas/genética , Zea mays/genética
2.
Pest Manag Sci ; 78(4): 1356-1366, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34873825

RESUMO

BACKGROUND: Western corn rootworm (WCR; Diabrotica virgifera virgifera) field-evolved resistance to transgenic maize expressing the Cry3Bb1 protein derived from Bacillus thuringiensis (Bt) has been confirmed across the United States Corn Belt. Although use of pyramided hybrids expressing Cry3Bb1 + Cry34/35Ab1 has increased in recent years to mitigate existing WCR Bt resistance, susceptibility of Nebraska WCR populations to this rootworm-Bt pyramid has not been assessed. Plant-based bioassays were used to characterize the susceptibility of WCR populations to Cry3Bb1 and Cry3Bb1 + Cry34/35Ab1 maize. Populations were collected from areas of northeastern Nebraska with a history of planting Bt maize that expressed Cry3Bb1 and Cry34/35Ab1. RESULTS: Significant differences in mean corrected survival among populations within Bt hybrids indicated a mosaic of WCR susceptibility to Cry3Bb1 + Cry34/35Ab1 and Cry3Bb1 maize occurred in the landscape. All field populations exhibited some level of resistance to one or both Bt hybrids when compared to susceptible laboratory control populations in bioassays. Most WCR populations exhibited incomplete resistance to Cry3Bb1 + Cry34/35Ab1 maize (92%) and complete resistance to Cry3Bb1 maize (79%). CONCLUSION: The present study confirms the first cases of field-evolved resistance to Cry3Bb1 + Cry34/35Ab1 maize in Nebraska and documents a landscape-wide WCR Cry3Bb1 resistance pattern in areas characterized by long-term continuous maize production and associated planting of Cry3Bb1 hybrids. Use of a multi-tactic integrated pest management approach is needed in areas of continuous maize production to slow or mitigate resistance evolution to Bt maize. © 2021 Society of Chemical Industry.


Assuntos
Bacillus thuringiensis , Besouros , Animais , Bacillus thuringiensis/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/farmacologia , Besouros/genética , Endotoxinas/genética , Endotoxinas/farmacologia , Resistência a Inseticidas/genética , Larva/genética , Nebraska , Plantas Geneticamente Modificadas/genética , Zea mays/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...