Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 25(50): 505601, 2014 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-25422409

RESUMO

We report on the influence of hydrogen bromide (HBr) in situ etching on the growth of InP, GaP and GaAs nanowires. We find that HBr can be used to impede undesired radial growth during axial growth for all three material systems. The use of HBr opens a window for optimizing the growth parameters with respect to the materials' quality rather than only their morphology. Transmission electron microscopy (TEM) characterization reveals a partial transition from a wurtzite crystal structure to a zincblende upon the use of HBr during growth. For InP, defect-related luminescence due to parasitic radial growth is removed by use of HBr. For GaP, the etching with HBr reduced the defect-related luminescence, but no change in peak emission energy was observed. For GaAs, the HBr etching resulted in a shift to lower photon emission energies due to a shift in the crystal structure, which reduced the wurtzite segments.

2.
Nano Lett ; 13(12): 5961-6, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24195687

RESUMO

Semiconductor-oxide heterointerfaces have several electron volts high-charge carrier potential barriers, which may enable devices utilizing quantum confinement at room temperature. While a single heterointerface is easily formed by oxide deposition on a crystalline semiconductor, as in MOS transistors, the amorphous structure of most oxides inhibits epitaxy of a second semiconductor layer. Here, we overcome this limitation by separating epitaxy from oxidation, using postgrowth oxidation of AlP segments to create axial and core-shell semiconductor-oxide heterostructured nanowires. Complete epitaxial AlP-InP nanowire structures were first grown in an oxygen-free environment. Subsequent exposure to air converted the AlP segments into amorphous aluminum oxide segments, leaving isolated InP segments in an oxide matrix. InP quantum dots formed on the nanowire sidewalls exhibit room temperature photoluminescence with small line widths (down to 15 meV) and high intensity. This optical performance, together with the control of heterostructure segment length, diameter, and position, opens up for optoelectrical applications at room temperature.


Assuntos
Nanoestruturas/química , Nanofios/química , Óxidos/química , Semicondutores , Alumínio/química , Índio/química , Oxirredução , Oxigênio/química , Fósforo/química
3.
Nanotechnology ; 18(3): 035601, 2007 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-19636124

RESUMO

The production of complex three-dimensional dendritic structures is an important step in the application of semiconductor nanowires. One promising method for achieving this is the sequential seeding of multiple generations of epitaxial nanowires using metal seed particles. However, it is difficult to control and predict the position of second and higher generation nanowires with respect to the first generation. Here we demonstrate a procedure for controlling the position of second-generation epitaxial nanowire branches on vertically aligned nanowire trunks. This method uses a spun-on polymer layer that masks first-generation wires to a specified height, preventing the growth of nanowire branches at lower positions as well as new nanowire growth on the substrate. This method appears not to be dependent on the materials or growth system (in this case MOVPE-grown GaP is demonstrated), and hence is likely to be applicable to a variety of materials systems and growth procedures using metal seed particles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...