Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 11(12)2023 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-38138138

RESUMO

Dwindling water sources increase the need for efficient wastewater treatment. Solar-driven algal turf scrubber (ATS) system may remediate wastewater by supporting the development and growth of periphytic microbiomes that function and interact in a highly dynamic manner through symbiotic interactions. Using ITS and 16S rRNA gene amplicon sequencing, we profiled the microbial communities of four microbial biofilms from ATS systems operated with municipal wastewater (mWW), diluted cattle and pig manure (CattleM and PigM), and biogas plant effluent supernatant (BGE) in comparison to the initial inocula and the respective wastewater substrates. The wastewater-driven biofilms differed significantly in their biodiversity and structure, exhibiting an inocula-independent but substrate-dependent establishment of the microbial communities. The prokaryotic communities were comparable among themselves and with other microbiomes of aquatic environments and were dominated by metabolically flexible prokaryotes such as nitrifiers, polyphosphate-accumulating and algicide-producing microorganisms, and anoxygenic photoautotrophs. Striking differences occurred in eukaryotic communities: While the mWW biofilm was characterized by high biodiversity and many filamentous (benthic) microalgae, the agricultural wastewater-fed biofilms consisted of less diverse communities with few benthic taxa mainly inhabited by unicellular chlorophytes and saprophytes/parasites. This study advances our understanding of the microbiome structure and function within the ATS-based wastewater treatment process.

2.
Front Bioeng Biotechnol ; 10: 962719, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36147532

RESUMO

This study investigated and optimized the nutrient remediation efficiency of a simple low-cost algal biofilm reactor, the algal turf scrubber (ATS), for wastewater treatment. Combined effects of three cultivation variables-total inorganic carbon, nitrogen-to-phosphorous (N:P) ratio, and light intensity-were examined. The ATS nutrient removal efficiency and biomass productivity were analyzed considering the response surface methodology (RSM). The maximum removal rates of total P and N were 8.3 and 19.1 mg L-1 d-1, respectively. As much as 99% of total P and 100% of total N were removed within 7 days. Over the same period, the dissolved oxygen concentration and pH value of the medium increased. The optimal growth conditions for simultaneous maximum P and N removal and biomass productivity were identified. Our RSM-based optimization results provide new insights into the combined effect of nutrient and light availability on the ATS remediation efficiency and biomass productivity.

3.
J Phycol ; 52(6): 961-972, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27402429

RESUMO

Haematococcus pluvialis (Chlorophyta) is a widely used microalga of great economic potential, yet its molecular genetics and evolution are largely unknown. We present new detailed molecular and phylogenetic analysis of two glutamine synthetase (GS) enzymes and genes (gln) under the Astaxanthin-inducing conditions of light- and nitrogen-stress. Structure analysis identified key residues and confirmed two decameric GS2 holoenzymes, a cytoplasmic enzyme, termed GS2c , and a plastidic form, termed GS2p , due to chloroplast-transit peptides at its N-terminus. Gene expression analysis showed dissociation of mRNA, protein, and enzyme activity levels for both GS2 under different growth conditions, indicating the strong post-transcriptional regulation. Data-mining identified novel and specified published gln genes from Prasinophyceae, Chlorophyta, Trebouxiophyceae, Charophyceae, Bryophyta, Lycopodiophyta, Spermatophyta, and Rhodophyta. Phylogenetic analysis found homologues to the cytosolic GS2c of H. pluvialis in all other photo- and non-photosynthetic Eukaryota. The chloroplastic GS2p was restricted to Chlorophyta, Bryophyta, some Proteobacteria and Fungii; no homologues were identified in Spermatophyta or other Eukaryota. This indicates two independent prokaryotic donors for these two gln genes in H. pluvialis. Combined phylogenetic analysis of GS, chl-b synthase, elongation factor, and light harvesting complex homologues project a newly refined model of Viridiplantae evolution. Herein, a GS1 evolved into the cytosolic GS2c and was passed on to all Eukaryota. Later, the chloroplastic GS2p entered the Archaeplastida lineage via a horizontal gene transfer at the divergence of Chlorophyta and Rhodophyta lineages. GS2p persisted in Chlorophyta and Bryophyta, but was lost during Spermatophyta evolution. These data suggest the revision of GS classification and nomenclature, and extend our understanding of the photosynthetic Eukaryota evolution.


Assuntos
Proteínas de Algas/genética , Clorófitas/classificação , Clorófitas/enzimologia , Glutamato-Amônia Ligase/genética , Filogenia , Sequência de Aminoácidos , Clorófitas/genética , Clonagem Molecular , Microalgas/classificação , Microalgas/enzimologia , Microalgas/genética , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...