Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuroscience ; 126(1): 213-27, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15145087

RESUMO

A major question in the study of cerebellar cortical function is how parallel fiber and climbing fiber inputs interact to shape information processing. Emphasis has been placed on the long-term effects due to conjunctive stimulation of climbing fibers and parallel fibers. Much less emphasis has been placed on short-term interactions and their spatial nature. To address this question the responses to parallel fiber and climbing fiber inputs and their short-term interaction were characterized using optical imaging with Neutral Red in the anesthetized mouse in vivo. Electrical stimulation of the cerebellar surface evoked an increase in fluorescence consisting of a transverse optical beam. The linear relationship between the optical responses and stimulus parameters, high spatial resolution and close coupling to the electrophysiological recordings show the utility of this imaging methodology. The majority of the optical response was due to activation of postsynaptic alpha-amino-3-hydroxyl-5-methyl-4-isoxazole propionate (AMPA) and metabotropic glutamate receptors with a minor contribution from the presynaptic parallel fibers. Stimulation of the inferior olive evoked parasagittal bands that were abolished by blocking AMPA glutamate receptors. Conjunctive stimulation of the cerebellar surface and inferior olive resulted in inhibition of the climbing fiber evoked optical responses. This lateral inhibition of the parasagittal bands extended out from both sides of an activated parallel fiber beam and was mediated by GABA(A) but not GABA(B) receptors. One hypothesized role for lateral inhibition of this type is to spatially focus the interactions between parallel fiber and climbing fiber input on Purkinje cells. In summary optical imaging with Neutral Red permitted visualization of cerebellar cortical responses to parallel fiber and climbing fiber activation. The GABA(A) dependent lateral inhibition of the climbing fiber evoked parasagittal bands by parallel fiber stimulation shows that cerebellar interneurons play a short-term role in shaping the responses of Purkinje cells to climbing fiber input.


Assuntos
Eletrofisiologia/métodos , Microscopia de Fluorescência/métodos , Fibras Nervosas/fisiologia , Células de Purkinje/fisiologia , Animais , Córtex Cerebelar/citologia , Córtex Cerebelar/fisiologia , Corantes , Potenciais Evocados , Feminino , Processamento de Imagem Assistida por Computador , Masculino , Camundongos , Camundongos Endogâmicos , Vias Neurais , Vermelho Neutro
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...