Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 1982, 2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36737574

RESUMO

Hellbenders (Cryptobranchus alleganiensis) are large, aquatic salamanders from the eastern United States. Both subspecies, eastern and Ozark hellbenders, have experienced declines resulting in federal listing of Ozark hellbenders. The globally distributed chytrid fungus, Batrachochytrium dendrobatidis (Bd) has been detected in both subspecies, and Batrachochytrium salamandrivorans (Bsal) poses a new threat if introduced into North America. Ozark hellbenders also suffer a high prevalence of toe lesions of unknown etiology, with changes in host immunocompetence hypothesized to contribute. Antimicrobial peptides (AMPs) secreted from dermal granular glands may play a role in hellbender health. We collected skin secretions from free-ranging hellbenders and enriched them for small cationic peptides used for growth inhibition assays against Bd and Bsal. Generalized linear mixed models revealed the presence of active toe lesions as the strongest and only significant predictor of decreased Bd inhibition by skin peptides. We also found skin secretions were more inhibitory of Bsal than Bd. MALDI-TOF mass spectrometry revealed candidate peptides responsible for anti-chytrid activity. Results support the hypothesis that hellbender skin secretions are important for innate immunity against chytrid pathogens, and decreased production or release of skin peptides may be linked to other sub-lethal effects of disease associated with toe lesions.


Assuntos
Quitridiomicetos , Urodelos , Animais , Urodelos/fisiologia , Batrachochytrium , Pele/microbiologia , Dedos do Pé
2.
Infect Immun ; 90(3): e0002022, 2022 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-35130454

RESUMO

Amphibian populations have been declining around the world for more than five decades, and the losses continue. Although causes are complex, major contributors to these declines are two chytrid fungi, Batrachochytrium dendrobatidis and Batrachochytrium salamandrivorans, which both cause the disease termed chytridiomycosis. Previously, we showed that B. dendrobatidis impedes amphibian defenses by directly inhibiting lymphocytes in vitro and in vivo by release of soluble metabolites, including kynurenine (KYN), methylthioadenosine (MTA), and spermidine (SPD). Here, we show that B. salamandrivorans cells and cell-free supernatants also inhibit amphibian lymphocytes as well as a human T cell line. As we have shown for B. dendrobatidis, high-performance liquid chromatography (HPLC) and mass spectrometry revealed that KYN, MTA, and SPD are key metabolites found in the B. salamandrivorans supernatants. Production of inhibitory factors by B. salamandrivorans is limited to mature zoosporangia and can occur over a range of temperatures between 16°C and 26°C. Taken together, these results suggest that both pathogenic Batrachochytrium fungi have evolved similar mechanisms to inhibit lymphocytes in order to evade clearance by the amphibian immune system.


Assuntos
Quitridiomicetos , Animais , Humanos , Anfíbios , Batrachochytrium , Cinurenina/metabolismo , Linfócitos , Espermidina/metabolismo , Urodelos
3.
Am J Speech Lang Pathol ; 31(1): 12-29, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34138658

RESUMO

PURPOSE: This study evaluated the effects of a linguistic characteristic, typicality, and a processing variable, working memory on the abilities of people with aphasia (PWA) and neurologically intact adults to process semantic representations. This was accomplished using a newly developed assessment task, the Category Typicality Test, which was created for the Temple Assessment of Language and Short-Term Memory in Aphasia. METHOD: A post hoc quasi-experimental design was used. Participants included 27 PWA and 14 neurologically intact adults who completed the picture and word versions of the Category Typicality Test, which required them to determine if two items are in the same category. Memory load was altered by increasing the number of items to be compared, and the typicality of items was altered to increase linguistic complexity. RESULTS: A four-way mixed analysis of covariance was conducted. There was a significant interaction between working memory load and category typicality with performance accuracy decreasing as working memory load increased and category typicality decreased. There was also a significant interaction for typicality and stimuli with better performance in the picture condition and a significant interaction for working memory and group with lower performance accuracy for PWA. Post hoc pairwise comparisons revealed differences between memory load, typicality, stimuli conditions, and group. PWA also showed greater magnitude of change than neurologically intact adults when comparing high and low working memory load conditions, but not typicality conditions. DISCUSSION: Increasing working memory load had the most substantial impact on the accuracy of category judgments in PWA, but the interaction between increased working memory load and decreased category typicality of items to be compared resulted in reduced accuracy in both groups. These findings suggest that manipulation of processing and linguistic variables in assessment will provide insight into the nature of linguistic breakdown in aphasia. Supplemental Material https://doi.org/10.23641/asha.14781996.


Assuntos
Afasia , Memória de Curto Prazo , Adulto , Afasia/diagnóstico , Humanos , Idioma , Linguística , Semântica
4.
Aphasiology ; 35(3): 334-356, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34024984

RESUMO

BACKGROUND: Verbal short-term memory (STM) and the related ability, working memory (WM), are widely understood to be integral components of language production and comprehension. However, assessment of these abilities in people with aphasia is hampered by a lack of valid, standardized measures that are clinically appropriate. Focusing primarily on verbal STM, we held a series of five focus groups with speech-language pathologists (SLPs) to understand better their current clinical practices and their beliefs and attitudes regarding assessment of verbal STM in aphasia. AIMS: The purpose of this study was to explore the attitudes, beliefs and preferences of clinical SLPs to determine: (1) current practices related to verbal STM assessment; (2) the extent to which practices reflect current theories of aphasia and the role of verbal STM in language processing; and (3) practical considerations regarding aphasia assessment in clinical practice. METHODS & PROCEDURES: Five focus groups were conducted using a semi-structured interview protocol with a total of 44 SLPs. Grounded theory methodology was used to collect, code and analyse the data. Codes were reviewed to identify emerging themes. Themes were compared to explore meta-themes, connections and potential theoretical frameworks. OUTCOMES & RESULTS: Five main themes were identified: (1) The theoretical understanding that clinical SLPs have regarding the role of verbal STM in aphasia is not always consistent with clinical practice; (2) Clinical SLPs highly value functionally relevant assessments; (3) The intense time constraints in clinical practice affect all aspects of assessment; (4) Clinical SLPs feel that there is a lack of appropriate tests for assessment of STM in aphasia; and (5) Clinical SLPs prefer tests that are comprehensive, easy to administer and psychometrically sound. CONCLUSIONS: Clinical SLPs report a lack of standardized measures to assess STM in individuals with aphasia. Researchers are met with several challenges in the development of these tests including effective communication with clinicians regarding the benefit of verbal STM assessments, especially as it relates to functional skills, and the creation of a test that is comprehensive yet simple, quick and easy to administer.

5.
Brain Sci ; 11(2)2021 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-33673290

RESUMO

We investigated whether semantic plausibility and syntactic complexity affect immediate sentence recall in people with latent and anomic aphasia. To date, these factors have not been explored in these types of aphasia. As with previous studies of sentence recall, we measured accuracy of verbatim recall and uniquely real-time speech measures. The results showed that accuracy did not distinguish performance between latent aphasia and neurotypical controls. However, some of the real-time speech measures distinguished performance between people with latent aphasia and neurotypical controls. There was some evidence, though not pervasive, that semantic plausibility and syntactic complexity influenced recall performance. There were no interactions between semantic plausibility and syntactic complexity. The speed of preparation of responses was slower in latent aphasia than controls; it was also slower in anomic aphasia than both latent and control groups. It appears that processing speed as indexed by temporal speech measures may be differentially compromised in latent and anomic aphasia. However, semantic plausibility and syntactic complexity did not show clear patterns of performance among the groups. Notwithstanding the absence of interactions, we advance an explanation based on conceptual short-term memory as to why semantically implausible sentences are typically more erroneous and possibly also slower in recall.

6.
Am J Speech Lang Pathol ; 30(1S): 391-406, 2021 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-32628508

RESUMO

Purpose This study was undertaken to explore whether measures of verbal short-term memory and working memory are sensitive to impairments in people with latent aphasia, who score within normal limits on typical aphasia test batteries. Method Seven individuals with latent aphasia and 24 neurotypical control participants completed 40 tasks from the Temple Assessment of Language and Short-term Memory in Aphasia (TALSA) that assess various aspects of verbal short-term memory, working memory, and language processing. Subtests were identified that differentiated between the two groups of participants. Results Twenty-one TALSA tasks were identified on which the participants with latent aphasia had significantly different performance than the typical control participants. All of these subtests engaged verbal short-term memory, and some involved working memory as well. Furthermore, the TALSA detected individual differences in linguistic profiles among participants with latent aphasia. Conclusions People with latent aphasia may be identified by tests that tap verbal short-term memory and working memory. In addition, the TALSA was found to be sensitive to the heterogeneity of this population. Further development of these measures will improve identification and treatment of this challenging population.


Assuntos
Afasia , Memória de Curto Prazo , Afasia/diagnóstico , Humanos , Idioma , Linguística , Testes Neuropsicológicos
7.
J Anim Ecol ; 90(2): 542-554, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33179786

RESUMO

Accurately predicting the impacts of climate change on wildlife health requires a deeper understanding of seasonal rhythms in host-pathogen interactions. The amphibian pathogen, Batrachochytrium dendrobatidis (Bd), exhibits seasonality in incidence; however, the role that biological rhythms in host defences play in defining this pattern remains largely unknown. The aim of this study was to examine whether host immune and microbiome defences against Bd correspond with infection risk and seasonal fluctuations in temperature and humidity. Over the course of a year, five populations of Southern leopard frogs (Rana [Lithobates] sphenocephala) in Tennessee, United States, were surveyed for host immunity, microbiome and pathogen dynamics. Frogs were swabbed for pathogen load and skin bacterial diversity and stimulated to release stored antimicrobial peptides (AMPs). Secretions were analysed to estimate total hydrophobic peptide concentrations, presence of known AMPs and effectiveness of Bd growth inhibition in vitro. The diversity and proportion of bacterial reads with a 99% match to sequences of isolates known to inhibit Bd growth in vitro were used as an estimate of predicted anti-Bd function of the skin microbiome. Batrachochytrium dendrobatidis dynamics followed the expected seasonal fluctuations-peaks in cooler months-which coincided with when host mucosal defences were most potent against Bd. Specifically, the concentration and expression of stored AMPs cycled synchronously with Bd dynamics. Although microbiome changes followed more linear trends over time, the proportion of bacteria that can function to inhibit Bd growth was greatest when risk of Bd infection was highest. We interpret the increase in peptide storage in the fall and the shift to a more anti-Bd microbiome over winter as a preparatory response for subsequent infection risk during the colder periods when AMP synthesis and bacterial growth is slow and pathogen pressure from this cool-adapted fungus is high. Given that a decrease in stored AMP concentrations as temperatures warm in spring likely means greater secretion rates, the subsequent decrease in prevalence suggests seasonality of Bd in this host may be in part regulated by annual immune rhythms, and dominated by the effects of temperature.


Assuntos
Quitridiomicetos , Micoses , Animais , Batrachochytrium , Micoses/veterinária , Rana pipiens , Tennessee
8.
Antibiotics (Basel) ; 9(10)2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-33008028

RESUMO

Although acquired immunodeficiency syndrome (AIDS) caused by the human immunodeficiency virus (HIV) is a manageable disease for many, it is still a source of significant morbidity and economic hardship for many others. The predominant mode of transmission of HIV/AIDS is sexual intercourse, and measures to reduce transmission are needed. Previously, we showed that caerin 1 antimicrobial peptides (AMPs) originally derived from Australian amphibians inhibited in vitro transmission of HIV at relatively low concentrations and had low toxicity for T cells and an endocervical cell line. The use of AMPs as part of microbicidal formulations would expose the vaginal microbiome to these agents and cause potential harm to protective lactobacilli. Here, we tested the effects of caerin 1 peptides and their analogs on the viability of two species of common vaginal lactobacilli (Lactobacillus rhamnosus and Lactobacillus crispatus). Several candidate peptides had limited toxicity for the lactobacilli at a range of concentrations that would inhibit HIV. Three AMPs were also tested for their ability to inhibit growth of Neisseria lactamica, a close relative of the sexually transmissible Neisseria gonorrhoeae. Neisseria lactamica was significantly more sensitive to the AMPs than the lactobacilli. Thus, several candidate AMPs have the capacity to inhibit HIV and possible N. gonorrhoeae transmission at concentrations that are significantly less harmful to the resident lactobacilli.

9.
Microb Ecol ; 79(1): 192-202, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31093727

RESUMO

Probiotics can ameliorate diseases of humans and wildlife, but the mechanisms remain unclear. Host responses to interventions that change their microbiota are largely uncharacterized. We applied a consortium of four natural antifungal bacteria to the skin of endangered Sierra Nevada yellow-legged frogs, Rana sierrae, before experimental exposure to the pathogenic fungus Batrachochytrium dendrobatidis (Bd). The probiotic microbes did not persist, nor did they protect hosts, and skin peptide sampling indicated immune modulation. We characterized a novel skin defense peptide brevinin-1Ma (FLPILAGLAANLVPKLICSITKKC) that was downregulated by the probiotic treatment. Brevinin-1Ma was tested against a range of amphibian skin cultures and found to inhibit growth of fungal pathogens Bd and B. salamandrivorans, but enhanced the growth of probiotic bacteria including Janthinobacterium lividum, Chryseobacterium ureilyticum, Serratia grimesii, and Pseudomonas sp. While commonly thought of as antimicrobial peptides, here brevinin-1Ma showed promicrobial function, facilitating microbial growth. Thus, skin exposure to probiotic bacterial cultures induced a shift in skin defense peptide profiles that appeared to act as an immune response functioning to regulate the microbiome. In addition to direct microbial antagonism, probiotic-host interactions may be a critical mechanism affecting disease resistance.


Assuntos
Antifúngicos/farmacologia , Peptídeos/farmacologia , Probióticos/farmacologia , Ranidae/microbiologia , Pele/metabolismo , Sequência de Aminoácidos , Animais , Antifúngicos/química , Antifúngicos/metabolismo , Quitridiomicetos/efeitos dos fármacos , Quitridiomicetos/crescimento & desenvolvimento , Microbiota/efeitos dos fármacos , Peptídeos/química , Peptídeos/genética , Peptídeos/metabolismo , Ranidae/metabolismo , Pele/microbiologia
10.
J Exp Biol ; 222(Pt 18)2019 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-31488625

RESUMO

Amphibians worldwide continue to battle an emerging infectious disease, chytridiomycosis, caused by Batrachochytrium dendrobatidis (Bd). Southern leopard frogs, Rana sphenocephala, are known to become infected with this pathogen, yet they are considered 'of least concern' for declines due to chytridiomycosis. Previous studies have shown that R. sphenocephala secretes four antimicrobial peptides (AMPs) onto their skin which may play an important role in limiting susceptibility to chytridiomycosis. Here, we examined (1) the effects of temperature and AMP depletion on infections with Bd and (2) the effects of temperature and Bd infection on the capacity to secrete AMPs in juvenile leopard frogs. Pathogen burden and mortality were greater in frogs exposed to Bd at low temperature but did not increase following monthly AMP depletion. Both low temperature and Bd exposure reduced the capacity of juvenile frogs to restore peptides after monthly depletions. Frogs held at 14°C were poorly able to restore peptides in comparison with those at 26°C. Frogs held at 26°C were better able to restore their peptides, but when exposed to Bd, this capacity was significantly reduced. These results strongly support the hypothesis that both colder temperatures and Bd infection impair the capacity of juvenile frogs to produce and secrete AMPs, an important component of their innate defense against chytrid fungi and other pathogens. Thus, in the face of unpredictable climate changes and enzootic pathogens, assessments of disease risk should consider the potential for effects of environmental variation and pathogen exposure on the quality of host defenses.


Assuntos
Peptídeos Catiônicos Antimicrobianos/metabolismo , Temperatura Baixa , Micoses/imunologia , Ranidae/imunologia , Animais , Peptídeos Catiônicos Antimicrobianos/efeitos dos fármacos , Quitridiomicetos/imunologia , Quitridiomicetos/fisiologia , Suscetibilidade a Doenças/fisiopatologia , Norepinefrina/administração & dosagem , Norepinefrina/farmacologia , Ranidae/microbiologia , Pele/imunologia , Pele/microbiologia
11.
Infect Immun ; 87(5)2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30833338

RESUMO

Amphibians have been declining around the world for more than four decades. One recognized driver of these declines is the chytrid fungus Batrachochytrium dendrobatidis, which causes the disease chytridiomycosis. Amphibians have complex and varied immune defenses against B. dendrobatidis, but the fungus also has a number of counterdefenses. Previously, we identified two small molecules produced by the fungus that inhibit frog lymphocyte proliferation, methylthioadenosine (MTA) and kynurenine (KYN). Here, we report on the isolation and identification of the polyamine spermidine (SPD) as another significant immunomodulatory molecule produced by B. dendrobatidis SPD and its precursor, putrescine (PUT), are the major polyamines detected, and SPD is required for growth. The major pathway of biosynthesis is from ornithine through putrescine to spermidine. An alternative pathway from arginine to agmatine to putrescine appears to be absent. SPD is inhibitory at concentrations of ≥10 µM and is found at concentrations between 1 and 10 µM in active fungal supernatants. Although PUT is detected in the fungal supernatants, it is not inhibitory to lymphocytes even at concentrations as high as 100 µM. Two other related polyamines, norspermidine (NSP) and spermine (SPM), also inhibit amphibian lymphocyte proliferation, but a third polyamine, cadaverine (CAD), does not. A suboptimal (noninhibitory) concentration of MTA (10 µM), a by-product of spermidine synthesis, enhances the inhibition of SPD at 1 and 10 µM. We interpret these results to suggest that B. dendrobatidis produces an "armamentarium" of small molecules that, alone or in concert, may help it to evade clearance by the amphibian immune system.


Assuntos
Anfíbios/imunologia , Anfíbios/metabolismo , Quitridiomicetos/imunologia , Quitridiomicetos/metabolismo , Quitridiomicetos/patogenicidade , Poliaminas/metabolismo , Espermidina/metabolismo , Animais , Interações Hospedeiro-Patógeno/imunologia , Evasão da Resposta Imune/imunologia , Evasão da Resposta Imune/fisiologia , Micoses/imunologia , Micoses/metabolismo
12.
Sci Rep ; 9(1): 3019, 2019 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-30816229

RESUMO

Amphibian populations worldwide have declined and in some cases become extinct due to chytridiomycosis, a pandemic disease caused by the fungus Batrachochytrium dendrobatidis; however, some species have survived these fungal epidemics. Previous studies have suggested that the resistance of these species is due to the presence of cutaneous bacteria producing antifungal metabolites. As our understanding of these metabolites is still limited, we assessed the potential of such compounds against human-relevant fungi such as Aspergillus. In this work we isolated 201 bacterial strains from fifteen samples belonging to seven frog species collected in the highlands of Panama and tested them against Aspergillus fumigatus. Among the 29 bacterial isolates that exhibited antifungal activity, Pseudomonas cichorii showed the greatest inhibition. To visualize the distribution of compounds and identify them in the inhibition zone produced by P. cichorii, we employed MALDI imaging mass spectrometry (MALDI IMS) and MS/MS molecular networking. We identified viscosin and massetolides A, F, G and H in the inhibition zone. Furthermore, viscosin was isolated and evaluated in vitro against A. fumigatus and B. dendrobatidis showing MIC values of 62.50 µg/mL and 31.25 µg/mL, respectively. This is the first report of cyclic depsipeptides with antifungal activity isolated from frog cutaneous bacteria.


Assuntos
Anuros/microbiologia , Aspergillus fumigatus/efeitos dos fármacos , Quitridiomicetos/efeitos dos fármacos , Lipopeptídeos/farmacologia , Peptídeos Cíclicos/farmacologia , Pele/microbiologia , Animais , Pseudomonas/efeitos dos fármacos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Simbiose/fisiologia , Espectrometria de Massas em Tandem/métodos
13.
ISME J ; 13(2): 361-373, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30254321

RESUMO

Management of hyper-virulent generalist pathogens is an emergent global challenge, yet for most disease systems we lack a basic understanding as to why some host species suffer mass mortalities, while others resist epizootics. We studied two sympatric species of frogs from the Colombian Andes, which coexist with the amphibian pathogen Batrachochytrium dendrobatidis (Bd), to understand why some species did not succumb to the infection. We found high Bd prevalence in juveniles for both species, yet infection intensities remained low. We also found that bacterial community composition and host defense peptides are specific to amphibian life stages. We detected abundant Bd-inhibitory skin bacteria across life stages and Bd-inhibitory defense peptides post-metamorphosis in both species. Bd-inhibitory bacteria were proportionally more abundant in adults of both species than in earlier developmental stages. We tested for activity of peptides against the skin microbiota and found that in general peptides did not negatively affect bacterial growth and in some instances facilitated growth. Our results suggest that symbiotic bacteria and antimicrobial peptides may be co-selected for, and that together they contribute to the ability of Andean amphibian species to coexist with the global pandemic lineage of Bd.


Assuntos
Anuros/microbiologia , Quitridiomicetos/isolamento & purificação , Microbiota , Peptídeos/farmacologia , Animais , Anuros/crescimento & desenvolvimento , Bactérias/efeitos dos fármacos , Bactérias/isolamento & purificação , Colômbia , Micoses/microbiologia , Micoses/veterinária , Peptídeos/análise , Pele/química , Pele/microbiologia , Simbiose , Simpatria
14.
Proc Biol Sci ; 285(1891)2018 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-30464067

RESUMO

Human activities impose novel pressures on amphibians, which are experiencing unprecedented global declines, yet population-level responses are poorly understood. A growing body of literature has revealed that noise is an anthropogenic stressor that impacts ecological processes spanning subcellular to ecosystem levels. These consequences can impose novel selective pressures on populations, yet whether populations can adapt to noise is unknown. We tested for adaptation to traffic noise, a widespread sensory 'pollutant'. We collected eggs of wood frogs (Rana sylvatica) from populations from different traffic noise regimes, reared hatchlings under the same conditions, and tested frogs for differences in sublethal fitness-relevant effects of noise. We show that prolonged noise impaired production of antimicrobial peptides associated with defence against disease. Additionally, noise and origin site interacted to impact immune and stress responses. Noise exposure altered leucocyte production and increased baseline levels of the stress-relevant glucocorticoid, corticosterone, in frogs from quiet sites, but noise-legacy populations were unaffected. These results suggest noise-legacy populations have adapted to avoid fitness-relevant physiological costs of traffic noise. These findings advance our understanding of the consequences of novel soundscapes and reveal a pathway by which anthropogenic disturbance can enable adaptation to novel environments.


Assuntos
Adaptação Fisiológica/fisiologia , Anuros/fisiologia , Ruído , Animais , Poluentes Ambientais , Atividades Humanas , Humanos
15.
Science ; 359(6383): 1517-1519, 2018 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-29599242

RESUMO

Infectious diseases rarely end in extinction. Yet the mechanisms that explain how epidemics subside are difficult to pinpoint. We investigated host-pathogen interactions after the emergence of a lethal fungal pathogen in a tropical amphibian assemblage. Some amphibian host species are recovering, but the pathogen is still present and is as pathogenic today as it was almost a decade ago. In addition, some species have defenses that are more effective now than they were before the epidemic. These results suggest that host recoveries are not caused by pathogen attenuation and may be due to shifts in host responses. Our findings provide insights into the mechanisms underlying disease transitions, which are increasingly important to understand in an era of emerging infectious diseases and unprecedented global pandemics.


Assuntos
Doenças dos Animais/microbiologia , Anuros/microbiologia , Quitridiomicetos/patogenicidade , Doenças Transmissíveis/epidemiologia , Surtos de Doenças , Interações Hospedeiro-Patógeno , Modelos Biológicos , Animais , Panamá
16.
Conserv Physiol ; 4(1): cow025, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27928507

RESUMO

The broad diversity of amphibian developmental strategies has been shaped, in part, by pathogen pressure, yet trade-offs between the rate of larval development and immune investment remain poorly understood. The expression of antimicrobial peptides (AMPs) in skin secretions is a crucial defense against emerging amphibian pathogens and can also indirectly affect host defense by influencing the composition of skin microbiota. We examined the constitutive or induced expression of AMPs in 17 species at multiple life-history stages. We found that AMP defenses in tadpoles of species with short larval periods (fast pace of life) were reduced in comparison with species that overwinter as tadpoles and grow to a large size. A complete set of defensive peptides emerged soon after metamorphosis. These findings support the hypothesis that species with a slow pace of life invest energy in AMP production to resist potential pathogens encountered during the long larval period, whereas species with a fast pace of life trade this investment in defense for more rapid growth and development.

17.
Infect Immun ; 83(12): 4565-70, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26371122

RESUMO

Batrachochytrium dendrobatidis is a fungal pathogen in the phylum Chytridiomycota that causes the skin disease chytridiomycosis. Chytridiomycosis is considered an emerging infectious disease linked to worldwide amphibian declines and extinctions. Although amphibians have well-developed immune defenses, clearance of this pathogen from the skin is often impaired. Previously, we showed that the adaptive immune system is involved in the control of the pathogen, but B. dendrobatidis releases factors that inhibit in vitro and in vivo lymphocyte responses and induce lymphocyte apoptosis. Little is known about the nature of the inhibitory factors released by this fungus. Here, we describe the isolation and characterization of three fungal metabolites produced by B. dendrobatidis but not by the closely related nonpathogenic chytrid Homolaphlyctis polyrhiza. These metabolites are methylthioadenosine (MTA), tryptophan, and an oxidized product of tryptophan, kynurenine (Kyn). Independently, both MTA and Kyn inhibit the survival and proliferation of amphibian lymphocytes and the Jurkat human T cell leukemia cell line. However, working together, they become effective at much lower concentrations. We hypothesize that B. dendrobatidis can adapt its metabolism to release products that alter the local environment in the skin to inhibit immunity and enhance the survival of the pathogen.


Assuntos
Adenosina/análogos & derivados , Quitridiomicetos/patogenicidade , Cinurenina/farmacologia , Micoses/imunologia , Pele/imunologia , Tionucleosídeos/farmacologia , Triptofano/farmacologia , Adenosina/biossíntese , Adenosina/farmacologia , Animais , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Quitridiomicetos/imunologia , Quitridiomicetos/metabolismo , Sinergismo Farmacológico , Interações Hospedeiro-Patógeno/imunologia , Humanos , Células Jurkat , Cinurenina/biossíntese , Linfócitos/efeitos dos fármacos , Linfócitos/imunologia , Linfócitos/microbiologia , Linfócitos/patologia , Micoses/microbiologia , Micoses/patologia , Pele/efeitos dos fármacos , Pele/microbiologia , Pele/patologia , Tionucleosídeos/biossíntese , Triptofano/biossíntese , Xenopus laevis
18.
Mol Ecol ; 24(7): 1628-41, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25737297

RESUMO

The introduction of next-generation sequencing has allowed for greater understanding of community composition of symbiotic microbial communities. However, determining the function of individual members of these microbial communities still largely relies on culture-based methods. Here, we present results on the phylogenetic distribution of a defensive functional trait of cultured symbiotic bacteria associated with amphibians. Amphibians are host to a diverse community of cutaneous bacteria and some of these bacteria protect their host from the lethal fungal pathogen Batrachochytrium dendrobatidis (Bd) by secreting antifungal metabolites. We cultured over 450 bacterial isolates from the skins of Panamanian amphibian species and tested their interactions with Bd using an in vitro challenge assay. For a subset of isolates, we also completed coculture experiments and found that culturing isolates with Bd had no effect on inhibitory properties of the bacteria, but it significantly decreased metabolite secretion. In challenge assays, approximately 75% of the bacterial isolates inhibited Bd to some extent and these inhibitory isolates were widely distributed among all bacterial phyla. Although there was no clear phylogenetic signal of inhibition, three genera, Stenotrophomonas, Aeromonas and Pseudomonas, had a high proportion of inhibitory isolates (100%, 77% and 73%, respectively). Overall, our results demonstrate that antifungal properties are phylogenetically widespread in symbiotic microbial communities of Panamanian amphibians and that some functional redundancy for fungal inhibition occurs in these communities. We hope that these findings contribute to the discovery and development of probiotics for amphibians that can mitigate the threat of chytridiomycosis.


Assuntos
Antibiose , Anuros/microbiologia , Bactérias/classificação , Quitridiomicetos/crescimento & desenvolvimento , Filogenia , Animais , Bactérias/isolamento & purificação , DNA Bacteriano/genética , Dados de Sequência Molecular , Panamá , RNA Ribossômico 16S/genética , Simbiose
19.
Dis Aquat Organ ; 113(1): 81-3, 2015 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-25667340

RESUMO

The amphibian skin fungus Batrachochytrium dendrobatidis (Bd) occurs widely in Puerto Rico and is thought to be responsible for the apparent extinction of 3 species of endemic frogs in the genus Eleutherodactylus, known as coquis. To examine immune defenses which may protect surviving species, we induced secretion of skin peptides from adult common coqui frogs E. coqui collected from upland forests at El Yunque. By matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry, we were unable to detect peptide signals suggestive of antimicrobial peptides, and enriched peptides showed no capacity to inhibit growth of Bd. Thus, it appears that E. coqui depend on other skin defenses to survive in the presence of this deadly fungus.


Assuntos
Peptídeos Catiônicos Antimicrobianos/metabolismo , Quitridiomicetos/isolamento & purificação , Micoses/veterinária , Ranidae/microbiologia , Animais , Micoses/epidemiologia , Micoses/microbiologia , Porto Rico , Ranidae/metabolismo
20.
ISME J ; 9(7): 1570-8, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25514536

RESUMO

The fungal pathogen Batrachochytrium dendrobatidis (Bd) has caused declines and extinctions in amphibians worldwide, and there is increasing evidence that some strains of this pathogen are more virulent than others. While a number of putative virulence factors have been identified, few studies link these factors to specific epizootic events. We documented a dramatic decline in juvenile frogs in a Bd-infected population of Cascades frogs (Rana cascadae) in the mountains of northern California and used a laboratory experiment to show that Bd isolated in the midst of this decline induced higher mortality than Bd isolated from a more stable population of the same species of frog. This highly virulent Bd isolate was more toxic to immune cells and attained higher density in liquid culture than comparable isolates. Genomic analyses revealed that this isolate is nested within the global panzootic lineage and exhibited unusual genomic patterns, including increased copy numbers of many chromosomal segments. This study integrates data from multiple sources to suggest specific phenotypic and genomic characteristics of the pathogen that may be linked to disease-related declines.


Assuntos
Quitridiomicetos/patogenicidade , Micoses/veterinária , Ranidae/microbiologia , Animais , California/epidemiologia , Micoses/epidemiologia , Micoses/microbiologia , Dinâmica Populacional , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...