Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Theory Comput ; 15(10): 5209-5220, 2019 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-31490684

RESUMO

In the present work, we introduce a self-consistent density-functional embedding technique, which leaves the realm of standard energy-functional approaches in density functional theory and targets directly the density-to-potential mapping that lies at its heart. Inspired by the density matrix embedding theory, we project the full system onto a set of small interacting fragments that can be solved accurately. Based on the rigorous relation of density and potential in density functional theory, we then invert the fragment densities to local potentials. Combining these results in a continuous manner provides an update for the Kohn-Sham potential of the full system, which is then used to update the projection. We benchmark our approach for molecular bond stretching in one and two dimensions and show that, in these cases, the scheme converges to accurate approximations for densities and Kohn-Sham potentials. We demonstrate that the known steps and peaks of the exact exchange-correlation potential are reproduced by our method with remarkable accuracy.

2.
J Chem Theory Comput ; 15(4): 2221-2232, 2019 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-30807149

RESUMO

We present a density-matrix embedding theory (DMET) study of the one-dimensional Hubbard-Holstein model, which is paradigmatic for the interplay of electron-electron and electron-phonon interactions. Analyzing the single-particle excitation gap, we find a direct Peierls insulator to Mott insulator phase transition in the adiabatic regime of slow phonons in contrast to a rather large intervening metallic phase in the anti-adiabatic regime of fast phonons. We benchmark the DMET results for both on-site energies and excitation gaps against density-matrix renormalization group (DMRG) results and find good agreement of the resulting phase boundaries. We also compare the full quantum treatment of phonons against the standard Born-Oppenheimer (BO) approximation. The BO approximation gives qualitatively similar results to DMET in the adiabatic regime but fails entirely in the anti-adiabatic regime, where BO predicts a sharp direct transition from Mott to Peierls insulator, whereas DMET correctly shows a large intervening metallic phase. This highlights the importance of quantum fluctuations in the phononic degrees of freedom for metallicity in the one-dimensional Hubbard-Holstein model.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...