Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Neurosci ; 27(3): 573-586, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38388734

RESUMO

Frontal circuits play a critical role in motor, cognitive and affective processing, and their dysfunction may result in a variety of brain disorders. However, exactly which frontal domains mediate which (dys)functions remains largely elusive. We studied 534 deep brain stimulation electrodes implanted to treat four different brain disorders. By analyzing which connections were modulated for optimal therapeutic response across these disorders, we segregated the frontal cortex into circuits that had become dysfunctional in each of them. Dysfunctional circuits were topographically arranged from occipital to frontal, ranging from interconnections with sensorimotor cortices in dystonia, the primary motor cortex in Tourette's syndrome, the supplementary motor area in Parkinson's disease, to ventromedial prefrontal and anterior cingulate cortices in obsessive-compulsive disorder. Our findings highlight the integration of deep brain stimulation with brain connectomics as a powerful tool to explore couplings between brain structure and functional impairments in the human brain.


Assuntos
Estimulação Encefálica Profunda , Córtex Motor , Doença de Parkinson , Humanos , Encéfalo , Córtex Motor/fisiologia , Doença de Parkinson/terapia , Mapeamento Encefálico
2.
Addict Biol ; 28(11): e13339, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37855075

RESUMO

Alcohol dependence (AD) is a debilitating disease associated with high relapse rates even after long periods of abstinence. Thus, elucidating neurobiological substrates of relapse risk is fundamental for the development of novel targeted interventions that could promote long-lasting abstinence. In the present study, we analysed resting-state functional magnetic resonance imaging (rsfMRI) data from a sample of recently detoxified patients with AD (n = 93) who were followed up for 12 months after rsfMRI assessment. Specifically, we employed graph theoretic analyses to compare functional brain network topology and functional connectivity between future relapsers (REL, n = 59), future abstainers (ABS, n = 28) and age- and gender-matched controls (CON, n = 83). Our results suggest increased whole-brain network segregation, decreased global network integration and overall blunted connectivity strength in REL compared with CON. Conversely, we found evidence for a comparable network architecture in ABS relative to CON. At the nodal level, REL exhibited decreased integration and decoupling between multiple brain systems compared with CON, encompassing regions associated with higher-order executive functions, sensory and reward processing. Among patients with AD, increased coupling between nodes implicated in reward valuation and salience attribution constitutes a particular risk factor for future relapse. Importantly, aberrant network organization in REL was consistently associated with shorter abstinence duration during follow-up, portending to a putative neural signature of relapse risk in AD. Future research should further evaluate the potential diagnostic value of the identified changes in network topology and functional connectivity for relapse prediction at the individual subject level.


Assuntos
Alcoolismo , Humanos , Alcoolismo/diagnóstico por imagem , Seguimentos , Encéfalo/diagnóstico por imagem , Etanol , Mapeamento Encefálico/métodos , Recidiva , Imageamento por Ressonância Magnética/métodos
3.
medRxiv ; 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36945497

RESUMO

Frontal circuits play a critical role in motor, cognitive, and affective processing - and their dysfunction may result in a variety of brain disorders. However, exactly which frontal domains mediate which (dys)function remains largely elusive. Here, we study 534 deep brain stimulation electrodes implanted to treat four different brain disorders. By analyzing which connections were modulated for optimal therapeutic response across these disorders, we segregate the frontal cortex into circuits that became dysfunctional in each of them. Dysfunctional circuits were topographically arranged from occipital to rostral, ranging from interconnections with sensorimotor cortices in dystonia, with the primary motor cortex in Tourette's syndrome, the supplementary motor area in Parkinson's disease, to ventromedial prefrontal and anterior cingulate cortices in obsessive-compulsive disorder. Our findings highlight the integration of deep brain stimulation with brain connectomics as a powerful tool to explore couplings between brain structure and functional impairment in the human brain.

4.
Front Neurosci ; 17: 1025428, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36845440

RESUMO

Dynamic interactions between brain regions, either during rest or performance of cognitive tasks, have been studied extensively using a wide variance of methods. Although some of these methods allow elegant mathematical interpretations of the data, they can easily become computationally expensive or difficult to interpret and compare between subjects or groups. Here, we propose an intuitive and computationally efficient method to measure dynamic reconfiguration of brain regions, also termed flexibility. Our flexibility measure is defined in relation to an a-priori set of biologically plausible brain modules (or networks) and does not rely on a stochastic data-driven module estimation, which, in turn, minimizes computational burden. The change of affiliation of brain regions over time with respect to these a-priori template modules is used as an indicator of brain network flexibility. We demonstrate that our proposed method yields highly similar patterns of whole-brain network reconfiguration (i.e., flexibility) during a working memory task as compared to a previous study that uses a data-driven, but computationally more expensive method. This result illustrates that the use of a fixed modular framework allows for valid, yet more efficient estimation of whole-brain flexibility, while the method additionally supports more fine-grained (e.g. node and group of nodes scale) flexibility analyses restricted to biologically plausible brain networks.

5.
Hum Brain Mapp ; 42(1): 245-258, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33009881

RESUMO

Recent working memory (WM) research has focused on identifying brain regions that retain different types of mental content. Only few neuroimaging studies have explored the mechanism of attention-based refreshing, which is a type of rehearsal and is thought to implement the dynamic components of WM allowing for update of WM contents. Here, we took advantage of the distinct coding properties of the superior parietal lobe (SPL), which retains spatial layout information, and the right inferior frontal gyrus (IFG), which retains frequency information of vibrotactile stimuli during tactile WM. In an fMRI delayed match-to-sample task, participants had to internally rehearse sequences of spatial layouts or vibratory frequencies. Our results replicate the dissociation of SPL and IFG for the retention of layout and frequency information in terms of activation differences between conditions. Additionally, we found strong premotor cortex (PMC) activation during rehearsal of either stimulus type. To explore interactions between these regions we used dynamic causal modeling and found that activation within the network was best explained by a model that allows the PMC to drive activity in the SPL and IFG during rehearsal. This effect was content-specific, meaning that the PMC showed stronger influence on the SPL during pattern rehearsal and stronger influence on the IFG during frequency rehearsal. In line with previously established PMC contributions to sequence processing, our results suggest that it acts as a content-independent area that flexibly recruits content-specific regions to bring a WM item into the focus of attention during the rehearsal of tactile stimulus sequences.


Assuntos
Mapeamento Encefálico , Memória de Curto Prazo/fisiologia , Córtex Motor/fisiologia , Lobo Parietal/fisiologia , Prática Psicológica , Percepção Espacial/fisiologia , Percepção do Tato/fisiologia , Adulto , Feminino , Dedos/fisiologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Córtex Motor/diagnóstico por imagem , Lobo Parietal/diagnóstico por imagem , Córtex Pré-Frontal/diagnóstico por imagem , Córtex Pré-Frontal/fisiologia , Vibração , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...