Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
J Am Chem Soc ; 145(23): 12499-12508, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37260100

RESUMO

One-electron reduced photosensitizers have been invoked as crucial intermediates in photoredox catalysis, including multiphoton excitation and electrophotocatalytic processes. However, such reduced chromophores have been less investigated, limiting mechanistic studies of their associated electron transfer processes. Here, we report a total of 11 different examples of isolable singly reduced iridium chromophores. Chemical reduction of a cyclometalated iridium complex with potassium graphite affords a 19-electron species. Structural and spectroscopic characterizations reveal a ligand-centered reduction product. The reduced chromophore absorbs a wide range of light from ultraviolet to near-infrared and exhibits photoinduced bimolecular electron transfer reactivity. These studies shed light on elusive reduced iridium chromophores in both ground and excited states, providing opportunities to investigate a commonly invoked intermediate in photoredox catalysis.

3.
J Am Chem Soc ; 144(47): 21783-21790, 2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-36395367

RESUMO

While heteroatom-centered radicals are understood to be highly electrophilic, their ability to serve as transient electron-withdrawing groups and facilitate polar reactions at distal sites has not been extensively developed. Here, we report a new strategy for the electronic activation of halophenols, wherein generation of a phenoxyl radical via formal homolysis of the aryl O-H bond enables direct nucleophilic aromatic substitution of the halide with carboxylate nucleophiles under mild conditions. Pulse radiolysis and transient absorption studies reveal that the neutral oxygen radical (O•) is indeed an extraordinarily strong electron-withdrawing group [σp-(O•) = 2.79 vs σp-(NO2) = 1.27]. Additional mechanistic and computational studies indicate that the key phenoxyl intermediate serves as an open-shell electron-withdrawing group in these reactions, lowering the barrier for nucleophilic substitution by more than 20 kcal/mol relative to the closed-shell phenol form of the substrate. By using radicals as transient activating groups, this homolysis-enabled electronic activation strategy provides a powerful platform to expand the scope of nucleophile-electrophile couplings and enable previously challenging transformations.


Assuntos
Eletrônica , Elétrons , Ácidos Carboxílicos , Fenol , Espécies Reativas de Oxigênio
4.
Dalton Trans ; 51(45): 17203-17215, 2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36314561

RESUMO

The complex, [{[Mn(bpy)(CO)3]2}(µ-CN)]+ (Mn2CN+), has previously been shown to photochemically reduce CO2 to CO. The detailed mechanism behind its reactivity was not elucidated. Herein, the photoevolution of this reaction is studied in acetonitrile (MeCN) using IR and UV-vis spectroscopy. Samples were excited into the MnI → π* bpy metal-to-ligand charge transfer (MLCT) absorption band triggering CO loss, and rapid MeCN solvent ligation at the open coordination site. It is concluded that this process occurs selectively at the Mn axial ligation site that is trans to the C-end of the bridging cyanide. Upon further photolysis, the metal-metal bonded dimeric species, [(CO)3(bpy)Mn-Mn(bpy)(CO)3] (Mn-Mn) is observed to form under anaerobic conditions. The presence of this dimeric species coincides with the observation of CO production. When oxygen is present, CO2 photoreduction does not occur, which is attributed to the inability of Mn2CN+ to convert to the metal-metal bonded dimer. Photolysis experiments, where the Mn-Mn dimer is formed photochemically under argon first and then exposed to CO2, reveal that it is the radical species, [Mn(bpy)(CO)3˙] (Mn˙), that interacts with the CO2. Since the presence of Mn-Mn and light is required for CO production, [Mn(bpy)(CO)3˙] is proposed to be a photochemical reagent for the transformation of CO2 to CO.

5.
J Phys Chem Lett ; 12(1): 537-545, 2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33378206

RESUMO

The morphology of organic semiconductors is critical to their function in optoelectronic devices and is particularly crucial in the donor-acceptor mixture that comprises the bulk heterojunction of organic solar cells. Here, energy landscapes can play integral roles in charge photogeneration, and recently have been shown to drive the accumulation of charge carriers away from the interface, resulting in the buildup of large nanoscale electric fields, much like a capacitor. In this work we combine morphological and spectroscopic data to outline the requirements for this interdomain charge accumulation, finding that this effect is driven by a three-phase morphology that creates an energetic cascade for charge carriers. By adjusting annealing conditions, we show that domain purity, but not size, is critical for an electro-absorption feature to grow-in. This demonstrates that the energy landscape around the interface shapes the movement of charges and that pure domains are required for charge carrier buildup that results in reduced recombination and large interdomain nanoscale electric fields.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...