Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 22(21): 26294-301, 2014 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-25401662

RESUMO

We report on quantum cascade lasers (QCLs) with a tilted facet utilizing their polarization property. Contrary to diode lasers, QCLs generate purely TM polarized light due to the intersubband selection rules. This property enables the utilization of reflectivity in terms of only TM polarized light (TM reflectivity). The TM reflectivity is reduced by tilting the front facet, resulting in enhanced light output power from the tilted facet. The peak output power of a QCL with a facet angle of 12° are increased by 31 %. The slope efficiency of a QCL with a facet angle of 17° are increased by 43 %. Additionally, a peculiar property of TM reflectivity, the Brewster angle, is investigated by using COMSOL simulations to find its availability in QCLs.


Assuntos
Técnicas de Química Analítica/instrumentação , Lasers Semicondutores , Luz , Espectrofotometria Infravermelho/instrumentação , Desenho de Equipamento
2.
Nat Commun ; 5: 4085, 2014 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-24905443

RESUMO

The increasing demand of rapid sensing and diagnosis in remote areas requires the development of compact and cost-effective mid-infrared sensing devices. So far, all miniaturization concepts have been demonstrated with discrete optical components. Here we present a monolithically integrated sensor based on mid-infrared absorption spectroscopy. A bi-functional quantum cascade laser/detector is used, where, by changing the applied bias, the device switches between laser and detector operation. The interaction with chemicals in a liquid is resolved via a dielectric-loaded surface plasmon polariton waveguide. The thin dielectric layer enhances the confinement and enables efficient end-fire coupling from and to the laser and detector. The unamplified detector signal shows a slope of 1.8-7 µV per p.p.m., which demonstrates the capability to reach p.p.m. accuracy over a wide range of concentrations (0-60%). Without any hybrid integration or subwavelength patterning, our approach allows a straightforward and cost-saving fabrication.


Assuntos
Desenho de Equipamento , Miniaturização , Espectroscopia de Infravermelho com Transformada de Fourier/instrumentação , Ressonância de Plasmônio de Superfície/instrumentação , Luz , Dispositivos Ópticos , Espectrofotometria Infravermelho
3.
Sensors (Basel) ; 13(2): 2196-205, 2013 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-23389348

RESUMO

We demonstrate the monolithic integration of a mid-infrared laser and detector utilizing a bi-functional quantum cascade active region. When biased, this active region provides optical gain, while it can be used as a detector at zero bias. With our novel approach we can measure the light intensity of the laser on the same chip without the need of external lenses or detectors. Based on a bound-to-continuum design, the bi-functional active region has an inherent broad electro-luminescence spectrum of 200 cm⁻¹, which indicates its use for single mode laser arrays. We have measured a peak signal of 191.5 mV at the on-chip detector, without any amplification. The room-temperature pulsed emission with an averaged power consumption of 4 mW and the high-speed detection makes these devices ideal for low-power sensors. The combination of the on-chip detection functionality, the broad emission spectrum and the low average power consumption indicates the potential of our bi-functional quantum cascade structures to build a mid-infrared lab-on-a-chip based on quantum cascade laser technology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...