Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep Med ; 4(11): 101245, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37913775

RESUMO

Adjuvanted protein vaccines offer high efficacy, yet most potent adjuvants remain proprietary. Several adjuvant compounds are being developed by the Vaccine Formulation Institute in Switzerland for global open access clinical use. In the context of the R21 malaria vaccine, in a mouse challenge model, we characterize the efficacy and mechanism of action of four Vaccine Formulation Institute adjuvants: two liposomal (LQ and LMQ) and two squalene emulsion-based adjuvants (SQ and SMQ), containing QS-21 saponin (Q) and optionally a synthetic TLR4 agonist (M). Two R21 vaccine formulations, R21/LMQ and R21/SQ, offer the highest protection (81%-100%), yet they trigger different innate sensing mechanisms in macrophages with LMQ, but not SQ, activating the NLRP3 inflammasome. The resulting in vivo adaptive responses have a different TH1/TH2 balance and engage divergent innate pathways while retaining high protective efficacy. We describe how modular changes in vaccine formulation allow for the dissection of the underlying immune pathways, enabling future mechanistically informed vaccine design.


Assuntos
Vacinas Antimaláricas , Malária , Animais , Camundongos , Lipossomos , Células Th1 , Emulsões , Adjuvantes Imunológicos/farmacologia , Malária/prevenção & controle
2.
Clin Immunol ; 238: 108998, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35398286

RESUMO

Deciphering signaling pathways that regulate the complex interplay between inflammation and cell death is a key challenge in understanding innate immune responses. Over recent years, receptor interacting protein (RIP) kinases have been described to regulate the interplay between inflammation and cell death. Whereas RIP1 and 3, the most well described members of the RIP kinase family, play important roles in necroptosis, RIP2's involvement in regulating inflammation, cell death processes and cancer is less well described and controversially discussed. Here, we demonstrate that RIP2 exerts immune regulatory functions by regulating mitochondrial damage and mitochondrial superoxide production in response to SV40 LT-induced genotoxic stress by the induction of ULK1-phosphorylation, therefore regulating the expression of interferon stimulated genes (ISGs) and NLRP3-inflammasome dependent IL-1ß release. Because RIP2 is upregulated and/or activated in autoimmune/inflammatory disease and cancer, observations from this study promise implications of RIP kinases in human disease.


Assuntos
Inflamação , Proteína Serina-Treonina Quinase 2 de Interação com Receptor , Dano ao DNA , Homeostase , Humanos , Espécies Reativas de Oxigênio/metabolismo , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/metabolismo
3.
Front Physiol ; 12: 634510, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34504434

RESUMO

LPS is frequently used to induce experimental endotoxic shock, representing a standard model of acute inflammation in mice. The resulting inflammatory response leads to hypothermia of the experimental animals, which in turn can be used as surrogate for the severity of systemic inflammation. Although increasingly applied as a humane endpoint in murine studies, differences between obtained temperature-time curves are typically evaluated at a single time point with t-tests or ANOVA analyses. We hypothesized that analyses of the entire temperature-time curves using a kinetic response model could fit the data, which show a temperature decrease followed by a tendency to return to normal temperature, and could increase the statistical power. Using temperature-time curves obtained from LPS stimulated mice, we derived a biologically motivated kinetic response model based on a differential equation. The kinetic model includes four parameters: (i) normal body temperature (T n ), (ii) a coefficient related to the force of temperature autoregulation (r), (iii) damage strength (p 0), and (iv) clearance rate (k). Kinetic modeling of temperature-time curves obtained from LPS stimulated mice is feasible and leads to a high goodness-of-fit. Here, modifying key enzymes of inflammatory cascades induced a dominant impact of genotypes on the damage strength and a weak impact on the clearance rate. Using a likelihood-ratio test to compare modeled curves of different experimental groups yields strongly enhanced statistical power compared to pairwise t-tests of single temperature time points. Taken together, the kinetic model presented in this study has several advantages compared to simple analysis of individual time points and therefore may be used as a standard method for assessing inflammation-triggered hypothermic response curves in mice.

4.
Pharmaceutics ; 13(2)2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33499143

RESUMO

Modern vaccines have largely shifted from using whole, killed or attenuated pathogens to being based on subunit components. Since this diminishes immunogenicity, vaccine adjuvants that enhance the immune response to purified antigens are critically needed. Further advantages of adjuvants include dose sparing, increased vaccine efficacy in immunocompromised individuals and the potential to protect against highly variable pathogens by broadening the immune response. Due to their ability to link the innate with the adaptive immune response, Toll-like receptor (TLR) agonists are highly promising as adjuvants in vaccines against life-threatening and complex diseases such as cancer, AIDS and malaria. TLRs are transmembrane receptors, which are predominantly expressed by innate immune cells. They can be classified into cell surface (TLR1, TLR2, TLR4, TLR5, TLR6) and intracellular TLRs (TLR3, TLR7, TLR8, TLR9), expressed on endosomal membranes. Besides a transmembrane domain, each TLR possesses a leucine-rich repeat (LRR) segment that mediates PAMP/DAMP recognition and a TIR domain that delivers the downstream signal transduction and initiates an inflammatory response. Thus, TLRs are excellent targets for adjuvants to provide a "danger" signal to induce an effective immune response that leads to long-lasting protection. The present review will elaborate on applications of TLR ligands as vaccine adjuvants and immunotherapeutic agents, with a focus on clinically relevant adjuvants.

5.
Vaccines (Basel) ; 8(3)2020 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-32971761

RESUMO

In modern vaccines, adjuvants can be sophisticated immunological tools to promote robust and long-lasting protection against prevalent diseases. However, there is an urgent need to improve immunogenicity of vaccines in order to protect mankind from life-threatening diseases such as AIDS, malaria or, most recently, COVID-19. Therefore, it is important to understand the cellular and molecular mechanisms of action of vaccine adjuvants, which generally trigger the innate immune system to enhance signal transition to adaptive immunity, resulting in pathogen-specific protection. Thus, improved understanding of vaccine adjuvant mechanisms may aid in the design of "intelligent" vaccines to provide robust protection from pathogens. Various commonly used clinical adjuvants, such as aluminium salts, saponins or emulsions, have been identified as activators of inflammasomes - multiprotein signalling platforms that drive activation of inflammatory caspases, resulting in secretion of pro-inflammatory cytokines of the IL-1 family. Importantly, these cytokines affect the cellular and humoral arms of adaptive immunity, which indicates that inflammasomes represent a valuable target of vaccine adjuvants. In this review, we highlight the impact of different inflammasomes on vaccine adjuvant-induced immune responses regarding their mechanisms and immunogenicity. In this context, we focus on clinically relevant adjuvants that have been shown to activate the NLRP3 inflammasome and also present various experimental adjuvants that activate the NLRP3-, NLRC4-, AIM2-, pyrin-, or non-canonical inflammasomes and could have the potential to improve future vaccines. Together, we provide a comprehensive overview on vaccine adjuvants that are known, or suggested, to promote immunogenicity through inflammasome-mediated signalling.

6.
Cell Rep ; 30(8): 2501-2511.e5, 2020 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-32101731

RESUMO

Pro-inflammatory caspase-1 is a key player in innate immunity. Caspase-1 processes interleukin (IL)-1ß and IL-18 to their mature forms and triggers pyroptosis. These caspase-1 functions are linked to its enzymatic activity. However, loss-of-function missense mutations in CASP1 do not prevent autoinflammation in patients, despite decreased IL-1ß production. In vitro data suggest that enzymatically inactive caspase-1 drives inflammation via enhanced nuclear factor κB (NF-κB) activation, independent of IL-1ß processing. Here, we report two mouse models of enzymatically inactive caspase-1-C284A, demonstrating the relevance of this pathway in vivo. In contrast to Casp1-/- mice, caspase-1-C284A mice show pronounced hypothermia and increased levels of the pro-inflammatory cytokines tumor necrosis factor alpha (TNF-α) and IL-6 when challenged with lipopolysaccharide (LPS). Caspase-1-C284A signaling is RIP2 dependent and mediated by TNF-α but independent of the NLRP3 inflammasome. LPS-stimulated whole blood from patients carrying loss-of-function missense mutations in CASP1 secretes higher amounts of TNF-α. Taken together, these results reveal non-canonical caspase-1 signaling in vivo.


Assuntos
Caspase 1/metabolismo , Inflamação/patologia , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/metabolismo , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo , Adolescente , Adulto , Animais , Criança , Pré-Escolar , Loci Gênicos , Genótipo , Células HEK293 , Heterozigoto , Humanos , Camundongos Endogâmicos C57BL , Mutação/genética , Adulto Jovem
7.
Clin Immunol ; 191: 100-109, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29183866

RESUMO

The proinflammatory protease caspase-1 plays pivotal roles in central pathways of innate immunity, thereby contributing to pathogen clearance. Beside its physiological role, dysregulated activity of caspase-1 is known to contribute to an increasing number of diseases. In this study, we optimized and validated a low-volume human whole blood assay facilitating the measurement of caspase-1 activation and inflammasome-related gene expression upon stimulation of the NLRP3, NLRC4 or AIM2 inflammasome. Using the NLRP3 inflammasome specific inhibitor MCC950, we were able to measure the activity of canonical or alternative NLRP3 pathways, AIM2 and NLRC4 inflammasomes in whole blood. Based on our data we assume a superposition of NLRP3 and NLRC4 inflammasome activities in human whole blood following stimulation with S. typhimurium. The optimized whole blood assay may be suitable for diagnostic and research purposes for pediatric patients who can only donate small amounts of blood.


Assuntos
Proteínas Adaptadoras de Sinalização CARD/sangue , Proteínas de Ligação ao Cálcio/sangue , Proteínas de Ligação a DNA/sangue , Inflamassomos/sangue , Proteína 3 que Contém Domínio de Pirina da Família NLR/sangue , Coleta de Amostras Sanguíneas , Caspase 1/fisiologia , Humanos , Interleucina-1beta/fisiologia , Salmonella typhimurium
8.
Cell Stem Cell ; 15(2): 227-38, 2014 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-25017720

RESUMO

In-depth analysis of the cellular and molecular mechanisms regulating human HSC function will require a surrogate host that supports robust maintenance of transplanted human HSCs in vivo, but the currently available options are problematic. Previously we showed that mutations in the Kit receptor enhance engraftment of transplanted HSCs in the mouse. To generate an improved model for human HSC transplantation and analysis, we developed immune-deficient mouse strains containing Kit mutations. We found that mutation of the Kit receptor enables robust, uniform, sustained, and serially transplantable engraftment of human HSCs in adult mice without a requirement for irradiation conditioning. Using this model, we also showed that differential KIT expression identifies two functionally distinct subpopulations of human HSCs. Thus, we have found that the capacity of this Kit mutation to open up stem cell niches across species barriers has significant potential and broad applicability in human HSC research.


Assuntos
Regulação da Expressão Gênica , Transplante de Células-Tronco Hematopoéticas/métodos , Células-Tronco Hematopoéticas/citologia , Mutação , Fator de Células-Tronco/metabolismo , Animais , Linhagem da Célula , Cruzamentos Genéticos , Ensaio de Imunoadsorção Enzimática , Sangue Fetal/citologia , Humanos , Linfócitos/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , RNA Mensageiro/metabolismo , Especificidade da Espécie , Timócitos/citologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...