Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PeerJ ; 3: e814, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25780766

RESUMO

In August 2013, we observed a high incidence (44%) of synchronous bands of reduced melanin (a type of fault bar we have termed "pallid bands") across the rectrices of juvenile Grasshopper Sparrows (Ammodrammus savannarum) captured near El Reno, Oklahoma. Earlier that year, on May 31, the site was struck by a severe storm which rained hailstones exceeding 5.5 cm diameter and spawned an historic 4.2 km-wide tornado <8 km to the south of the site. We hypothesized that this stressor had induced the pallid bands. An assessment of Grasshopper Sparrow nesting phenology indicated that a large number of nestlings were likely growing tail feathers when the storm hit. The pallid bands were restricted to the distal half of feathers and their widths significantly increased as a function of distance from the tip (i.e., age at formation). We predicted that if stress had caused these pallid bands, then a spike in circulating δ (15)N originating from tissue catabolism during the stress response would have been incorporated into the developing feather. From 18 juveniles captured at the site in August we measured δ (15)N and δ (13)C stable isotope ratios within four to five 0.25-0.40 mg feather sections taken from the distal end of a tail feather; the pallid band, if present, was contained within only one section. After accounting for individual and across-section variation, we found support for our prediction that feather sections containing or located immediately proximal to pallid bands (i.e., the pallid band region) would show significantly higher δ (15)N than sections outside this region. In contrast, the feathers of juveniles with pallid bands compared to normal appearing juveniles showed significantly lower δ (15)N. A likely explanation is that the latter individuals hatched after the May 31 storm and had consumed a trophically-shifted diet relative to juveniles with pallid bands. Considering this, the juveniles of normal appearance were significantly less abundant within our sample relative to expectations from past cohorts (z = - 2.03; p = 0.042) and, in as much, suggested widespread nest losses during the storm. Severe weather events may represent major stressors to ground-nesting birds, especially for recent fledglings. We call for others to exploit opportunities to study the effects of severe weather when these rare but devastating stressors impact established field research sites.

2.
Ecol Appl ; 16(2): 687-95, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16711055

RESUMO

Bird populations in North America's grasslands have declined sharply in recent decades. These declines are traceable, in large part, to habitat loss, but management of tallgrass prairie also has an impact. An indirect source of decline potentially associated with management is brood parasitism by the Brown-headed Cowbird (Molothrus ater), which has had substantial negative impacts on many passerine hosts. Using a novel application of regression trees, we analyzed an extensive five-year set of nest data to test how management of tallgrass prairie affected rates of brood parasitism. We examined seven landscape features that may have been associated with parasitism: presence of edge, burning, or grazing, and distance of the nest from woody vegetation, water, roads, or fences. All five grassland passerines that we included in the analyses exhibited evidence of an edge effect: the Grasshopper Sparrow (Ammodramus savannarum), Henslow's Sparrow (A. henslowii), Dickcissel (Spiza americana), Red-winged Blackbird (Agelaius phoeniceus), and Eastern Meadowlark (Sturnella magna). The edge was represented by narrow strips of woody vegetation occurring along roadsides cut through tallgrass prairie. The sparrows avoided nesting along these woody edges, whereas the other three species experienced significantly higher (1.9-5.3x) rates of parasitism along edges than in prairie. The edge effect could be related directly to increase in parasitism rate with decreased distance from woody vegetation. After accounting for edge effect in these three species, we found evidence for significantly higher (2.5-10.5x) rates of parasitism in grazed plots, particularly those burned in spring to increase forage, than in undisturbed prairie. Regression tree analysis proved to be an important tool for hierarchically parsing various landscape features that affect parasitism rates. We conclude that, on the Great Plains, rates of brood parasitism are strongly associated with relatively recent road cuts, in that edge effects manifest themselves through the presence of trees, a novel habitat component in much of the tallgrass prairie. Grazing is also a key associate of increased parasitism. Areas managed with prescribed fire, used frequently to increase forage for grazing cattle, may experience higher rates of brood parasitism. Regardless, removing trees and shrubs along roadsides and refraining from planting them along new roads may benefit grassland birds.


Assuntos
Meio Ambiente , Comportamento de Nidação , Passeriformes/fisiologia , Passeriformes/parasitologia , Animais , Bovinos , Ingestão de Alimentos , Feminino , Incêndios , Agricultura Florestal , Masculino , Oklahoma , Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...