Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 13(9)2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32369913

RESUMO

In the last few decades, Portland/residue composites have been researched due to their technological and environmental advantages. In this study, residues of Acrocomia aculeata (Jacq.) Lodd endocarp (AE) were introduced in the Portland cement-soil (PC) matrix in different concentrations (0, 5, 10, 15, 20, and 50 wt%) to produce PC/AE bricks. The characterization of the microstructures of the bricks indicate agglomerates of AE particles with increased humidity in small regions distributed throughout the matrix. Mid-infrared and laser-induced breakdown spectroscopy, along with thermogravimetry, indicated that AE contained mainly lignin and cellulose, as well as inorganic chemical elements such as Mg and Si. X-ray studies revealed that AE did not affect the crystallographic properties of the Portland/AE bricks. The findings indicate that the use of AE improved the thermal insulation capability of the composites with a small impact on the compressive strength.

2.
Nano Lett ; 13(9): 4517-21, 2013 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-23952071

RESUMO

Topological insulators such as Bi2Se3 and Bi2Te3 have extremely promising transport properties, due to their unique electronic behavior: they are insulators in the bulk and conducting at the surface. Recently, the coexistence of two types of surface conducting channels has been observed for Bi2Se3, one being Dirac electrons from the topological state and the other electrons from a conventional two-dimensional gas. As an explanation for this effect, a possible structural modification of the surface of these materials has been hypothesized. Using scanning tunneling microscopy we have directly observed the coexistence of a conducting bilayer and the bare surface of bulk-terminated Bi2Te3. X-ray crystal truncation rod scattering was used to directly show the stabilization of this epitaxial bilayer which is primarily composed of bismuth. Using this information, we have performed density functional theory calculations to determine the electronic properties of the possible surface terminations. They can be used to understand recent angular resolved photoemission data which have revealed this dual surface electronic behavior.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...