Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Biodivers ; 20(9): e202300947, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37539983

RESUMO

This review provides the first comprehensive appraisal of bioactive compounds and their biological activities in Persea species from 1950 to 2023. Relevant articles from reputable databases, including PubMed, Web of Science, Science Direct and Google Scholar were collected, leading to the isolation of about 141 metabolite compounds, mainly flavonoids, terpenoids, fatty alcohols, lignoids, and γ-lactone derivatives. These compounds exhibit diverse biological activities, including insecticidal, antifeedant, nematicidal, antibacterial, antifungal, antiviral, cytotoxic, anti-inflammatory, and antioxidant properties. The review emphasizes the significant chemical and pharmacological potential of different Persea species, encouraging further research in various fields and medicine. Valuable insights into potential applications of Persea plants are provided.


Assuntos
Persea , Extratos Vegetais , Etnofarmacologia , Extratos Vegetais/química , Anti-Inflamatórios/farmacologia , Antifúngicos , Compostos Fitoquímicos/química , Fitoterapia
2.
Nat Prod Res ; 36(4): 999-1003, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33146027

RESUMO

The present work describes the acetylcholinesterase inhibitory activity of Ocotea pomaderroides extracts besides the chemical composition of chromatographic fractions. The hexane, dichloromethane and ethyl acetate extract soluble fractions showed high Electrophorus electricus acetylcholinesterase (EelAChE) inhibition (92.18, 71.86 and 74.25%, respectively) while the butanolic and aqueous extracts showed moderate to low activities (44.48 and 20.74%, respectively). The high-performance liquid chromatography coupled with electrospray ionization multiple-stage mass spectrometry (HPLC-ESI-MSn) analysis led to the identification of the alkaloids and flavonol glycoside derivatives present in these extracts. The binding profile of the alkaloids and their atomic effect on 3D structure of Electrophorus electricus AchE (EelAChE) were assessed with molecular modeling.


Assuntos
Inibidores da Colinesterase/farmacologia , Ocotea , Extratos Vegetais , Acetilcolinesterase/metabolismo , Cromatografia Líquida de Alta Pressão , Ocotea/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem
3.
Phytochem Anal ; 31(6): 711-721, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32291820

RESUMO

INTRODUCTION: Lauraceae alkaloids are a structurally diverse class of plant specialised secondary metabolites that play an important role in modern pharmacotherapy, being useful as well as model compounds for the development of synthetic analogues. However, alkaloids characterisation is challenging due to low concentrations, the complexity of plant extracts, and long processes for accurate structural determinations. OBJECTIVE: The use of high-performance thin layer chromatography coupled with desorption electrospray ionisation multistage mass spectrometry (HPTLC DESI-MSn ) as a fast tool to identify alkaloids present in Ocotea spixiana extract and evaluate the extract's acaricide activity. METHODS: Ocotea spixiana twigs were extracted by conventional liquid-liquid partitioning. HPTLC analysis of the ethyl acetate extract was performed to separate isobaric alkaloids prior to DESI-MSn analysis, performed from MS3 up to MS7 . The extract's acaricide activity against Rhipicephalus microplus was evaluated by in vitro (larval immersion test) and in silico tests. RESULTS: HPTLC-DESI-MSn analysis was performed to identify a total of 13 aporphine and four benzylisoquinoline-type alkaloids reported for the first time in O. spixiana. In vitro evaluation of the extract and the alkaloid boldine showed significant activity against R. microplus larvae. It was established in silico that boldine had important intermolecular interactions with R. microplus acetylcholinesterase enzyme. CONCLUSION: The present study demonstrated that HPTLC-DESI-MSn is a useful analytical tool to identify isoquinoline alkaloids in plant extracts. The acaricide activity of the O. spixiana ethyl acetate extract can be correlated to the presence of alkaloids.


Assuntos
Acaricidas , Alcaloides , Aporfinas , Benzilisoquinolinas , Ocotea , Acaricidas/farmacologia , Alcaloides/farmacologia , Aporfinas/farmacologia , Extratos Vegetais/farmacologia , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...