Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polym Chem ; 13(33): 4798-4808, 2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37799166

RESUMO

Reversible-deactivation radical polymerizations are privileged approaches for the synthesis of functional and hybrid materials. A bottleneck for conducting these processes is the need to maintain oxygen free conditions. Herein we report a broadly applicable approach to "polymerize through" oxygen using the synergistic combination of two radical initiators having different rates of homolysis. The in situ monitoring of the concentrations of oxygen and monomer simultaneously provided insight into the function of the two initiators and enabled the identification of conditions to effectively remove dissolved oxygen and control polymerization under open-to-air conditions. By understanding how the surface area to volume ratio of reaction vessels influence open-to-air polymerizations, well-defined polymers were produced using acrylate, styrenic, and methacrylate monomers, which each represent an expansion of scope for the "polymerizing through" oxygen approach. Demonstration of this method in tubular reactors using continuous flow chemistry provided a more complete structure-reactivity understanding of how reaction headspace influences PTO RAFT polymerizations.

2.
ACS Macro Lett ; 9(1): 123-133, 2020 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35638663

RESUMO

The number of reports using continuous flow technology in tubular reactors to perform precision polymerizations has grown enormously in recent years. Flow polymerizations allow highly efficient preparation of polymers exhibiting well-defined molecular characteristics, and has been applied to a slew of monomers and various polymerization mechanisms, including anionic, cationic, radical, and ring-opening. Polymerization conducted in continuous flow offers several distinct advantages, including improved efficiency, reproducibility, and enhanced safety for exothermic polymerizations using highly toxic components, high pressures, and high temperatures. The further development of this technology is thus of relevance for many industrial polymerization processes. While much progress has been demonstrated in recent years, opportunities remain for increasing the compositional and architectural complexity of polymeric materials synthesized in a continuous fashion. Extending the reactor processing principles that have heretofore been focused on optimizing homopolymerization to include multisegment block copolymers, particularly from monomers that propagate via incompatible mechanisms, represents a major challenge and coveted target for continuous flow polymerization. Likewise, the spatial and temporal control of reactivity afforded by flow chemistry has and will continue to enable the production of complex polymeric architectures. This Viewpoint offers a brief background of continuous flow polymerization focused primarily on tubular (micro)reactors and includes selected examples that are relevant to these specific developments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...