Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochimie ; 220: 144-166, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38176606

RESUMO

Animal venoms are a rich and complex source of components, including peptides (such as neurotoxins, anionic peptides and hypotensins), lipids, proteins (such as proteases, hyaluronidases and phospholipases) and inorganic compounds, which affect all biological systems of the envenoming victim. Their action may result in a wide range of clinical manifestations, including tachy/bradycardia, hyper/hypotension, disorders in blood coagulation, pain, edema, inflammation, fever, muscle paralysis, coma and even death. Scorpions are one of the most studied venomous animals in the world and interesting bioactive molecules have been isolated and identified from their venoms over the years. Tityus spp. are among the scorpions with high number of accidents reported in the Americas, especially in Brazil. Their venoms have demonstrated interesting results in the search for novel agents with antimicrobial, anti-viral, anti-parasitic, hypotensive, immunomodulation, anti-insect, antitumor and/or antinociceptive activities. Furthermore, other recent activities still under investigation include drug delivery action, design of anti-epileptic drugs, investigation of sodium channel function, treatment of erectile disfunction and priapism, improvement of scorpion antivenom and chelating molecules activity. In this scenario, this paper focuses on reviewing advances on Tityus venom components mainly through the modern omics technologies as well as addressing potential therapeutic agents from their venoms and highlighting this abundant source of pharmacologically active molecules with biotechnological application.


Assuntos
Venenos de Escorpião , Escorpiões , Animais , Venenos de Escorpião/química , Venenos de Escorpião/farmacologia , Humanos
2.
J Ethnopharmacol ; 278: 114255, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34062248

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Green propolis is produced by Apis mellifera honeybees using Baccharis dracunculifolia D.C. (Asteraceae) as substrate. This Southern Brazilian native plant and green propolis have been used in traditional medicine to treat gastric diseases, inflammation and liver disorders. AIM OF THE STUDY: Investigate the effects of baccharin (Bac) or p-coumaric acid (pCA) isolated from B. dracunculifolia D.C. (Asteraceae) over the inflammation induced by lipopolysaccharide (LPS) in vivo. MATERIALS AND METHODS: Inflammation was induced by LPS injection into air-pouches in mice, which were subsequently treated with Bac or pCA. Lavage fluid was collected from air pouches for the quantification of cellular influx via microscopy, and quantification of inflammatory mediators via colorimetric methods, ELISA and liquid chromatography-tandem mass spectrometry (LC-MS/MS). RESULTS: LPS-induced inflammation increased cellular influx and increased the levels of parameters related to vascular permeability and edema formation, such as nitric oxide (NO) and protein extravasation. Moreover, LPS increased the levels of cytokines and eicosanoids in the air-pouches. Importantly, both Bac and pCA suppressed the infiltration of neutrophils, production of NO and protein extravasation. Notably, the compounds promote differential regulation of cytokine and eicosanoid production. CONCLUSIONS: Our results suggest that Bac from green propolis directly affects inflammation by inhibiting the production of cytokines and eicosanoids, while pCA may exert direct, but also indirect effects on inflammation by stimulating the production of regulatory effectors such as interkeukin-10 in vivo.


Assuntos
Baccharis/química , Ácidos Cumáricos/farmacologia , Própole/metabolismo , Tricotecenos/farmacologia , Animais , Anti-Inflamatórios/isolamento & purificação , Anti-Inflamatórios/farmacologia , Abelhas , Brasil , Ácidos Cumáricos/isolamento & purificação , Citocinas/metabolismo , Eicosanoides/metabolismo , Feminino , Inflamação/tratamento farmacológico , Lipopolissacarídeos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Extratos Vegetais/química , Tricotecenos/isolamento & purificação
3.
Nat Commun ; 11(1): 5433, 2020 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-33116136

RESUMO

Scorpion envenomation is a leading cause of morbidity and mortality among accidents caused by venomous animals. Major clinical manifestations that precede death after scorpion envenomation include heart failure and pulmonary edema. Here, we demonstrate that cardiac dysfunction and fatal outcomes caused by lethal scorpion envenomation in mice are mediated by a neuro-immune interaction linking IL-1 receptor signaling, prostaglandin E2, and acetylcholine release. IL-1R deficiency, the treatment with a high dose of dexamethasone or blockage of parasympathetic signaling using atropine or vagotomy, abolished heart failure and mortality of envenomed mice. Therefore, we propose the use of dexamethasone administration very early after envenomation, even before antiserum, to inhibit the production of inflammatory mediators and acetylcholine release, and to reduce the risk of death.


Assuntos
Acetilcolina/metabolismo , Dinoprostona/biossíntese , Insuficiência Cardíaca/etiologia , Receptores Tipo I de Interleucina-1/metabolismo , Venenos de Escorpião/toxicidade , Animais , Antivenenos/administração & dosagem , Atropina/farmacologia , Dexametasona/administração & dosagem , Modelos Animais de Doenças , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/fisiopatologia , Humanos , Mediadores da Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Cardiovasculares , Neuroimunomodulação/efeitos dos fármacos , Receptores Tipo I de Interleucina-1/deficiência , Receptores Tipo I de Interleucina-1/genética , Picadas de Escorpião/complicações , Escorpiões , Transdução de Sinais , Vagotomia
4.
Front Immunol ; 11: 2011, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32973807

RESUMO

Scorpionism is responsible for most accidents involving venomous animals in Brazil, which leads to severe symptoms that can evolve to death. Scorpion venoms consist of complexes cocktails, including peptides, proteins, and non-protein compounds, making separation and purification procedures extremely difficult and time-consuming. Scorpion toxins target different biological systems and can be used in basic science, for clinical, and biotechnological applications. This study is the first to explore the venom content of the unexplored scorpion species Rhopalurus crassicauda, which inhabits exclusively the northernmost state of Brazil, named Roraima, and southern region of Guyana. Here, we pioneer the fractionation of the R. crassicauda venom and isolated and characterized a novel scorpion beta-neurotoxin, designated Rc1, and a monomeric hyaluronidase. R. crassicauda venom and Rc1 (6,882 Da) demonstrated pro-inflammatory activities in vitro and a nociceptive response in vivo. Moreover, Rc1 toxin showed specificity for activating Nav1.4, Nav1.6, and BgNav1 voltage-gated ion channels. This study also represents a new perspective for the treatment of envenomings in Roraima, since the Brazilian scorpion and arachnid antivenoms were not able to recognize R. crassicauda venom and its fractions (with exception of hyaluronidase). Our work provides useful insights for the first understanding of the painful sting and pro-inflammatory effects associated with R. crassicauda envenomings.


Assuntos
Hialuronoglucosaminidase/metabolismo , Mediadores da Inflamação/metabolismo , Peptídeos/metabolismo , Picadas de Escorpião/terapia , Venenos de Escorpião/metabolismo , Animais , Antivenenos/imunologia , Antivenenos/uso terapêutico , Linhagem Celular , Cromatografia Líquida , Reações Cruzadas , Humanos , Hialuronoglucosaminidase/isolamento & purificação , Mediadores da Inflamação/isolamento & purificação , Canais Iônicos/metabolismo , Camundongos , Peptídeos/isolamento & purificação , Venenos de Escorpião/isolamento & purificação , Escorpiões , Análise de Sequência de Proteína
5.
Toxins (Basel) ; 12(3)2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-32150895

RESUMO

Tityus serrulatus causes numerous scorpion envenomation accidents and deaths worldwide. The symptoms vary from local to systemic manifestations, culminating in pulmonary edema and cardiogenic shock. Among these events, transitory hyperglycemia is a severe manifestation that influences pulmonary edema, hemodynamic alterations, and cardiac disturbances. However, the molecular mechanism that leads to increased glucose levels after T. serrulatus envenomation remains unknown. This study aimed to investigate our hypothesis that hyperglycemia due to scorpion envenomation involves inflammatory signaling in the pancreas. The present study showed that T. serrulatus venom induces the production of IL-1α and IL-1ß in the pancreas, which signal via IL-1R and provoke nitric oxide (NO) production as well as edema in ß-cells in islets. Il1r1-/- mice were protected from transitory hyperglycemia and did not present disturbances in insulin levels in the serum. These results suggest that the pathway driven by IL-1α/IL-1ß-IL-1R-NO inhibits insulin release by ß-cells, which increases systemic glucose concentration during severe scorpion envenomation. A supportive therapy that inhibits NO production, combined with antiserum, may help to prevent fatal outcomes of scorpion envenomation. Our findings provide novel insights into the design of supportive therapy with NO inhibitors combined with antiscorpion venom serum to overcome fatal outcomes of scorpion envenomation.


Assuntos
Hiperglicemia/metabolismo , Óxido Nítrico/metabolismo , Pâncreas/efeitos dos fármacos , Receptores de Interleucina-1/metabolismo , Venenos de Escorpião/toxicidade , Animais , Insulina/metabolismo , Interleucina-1alfa/metabolismo , Interleucina-1beta/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pâncreas/metabolismo , Pâncreas/patologia , Receptores de Interleucina-1/genética , Picadas de Escorpião/metabolismo
6.
Inflamm Res ; 69(1): 105-113, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31754736

RESUMO

OBJECTIVE AND DESIGN: Investigate survival outcomes, and immunological and metabolomic effects of hyaluronidase (Hz) treatment during mouse models of acute inflammation and sepsis. METHODS: Survival of C57Bl/6 mice was monitored after lethal challenge with lipopolysaccharide (LPS) or cecal and ligation puncture (CLP)-induced sepsis and treated with Hz or saline. Mice were also challenged with LPS and treated with Hz for leukocyte counting, cytokine quantification and determination of metabolomic profiles in the peritoneal fluid. RESULTS: Hz treatment improved survival outcomes after lethal challenge with LPS or CLP-induced sepsis. LPS challenge promoted acute neutrophil accumulation and production of interleukin-1ß (IL-1ß) and IL-6 in the peritoneum, whereas Hz treatment suppressed neutrophil infiltration and cytokine production. We further characterized the metabolomic alterations caused by LPS challenge, which predicted activity of metabolic pathways related to fatty acids and eicosanoids. Hz treatment had a profound effect over the metabolic response, reflected by reductions of the relative levels of fatty acids. CONCLUSION: Collectively, these data demonstrate that Hz treatment is associated with metabolic reprogramming of pathways that sustain the inflammatory response.


Assuntos
Hialuronoglucosaminidase/farmacologia , Sepse/imunologia , Sepse/metabolismo , Doença Aguda , Animais , Líquido Ascítico/citologia , Líquido Ascítico/imunologia , Líquido Ascítico/metabolismo , Modelos Animais de Doenças , Eicosanoides/metabolismo , Ácidos Graxos/metabolismo , Imunomodulação , Interleucina-1beta/imunologia , Interleucina-6/imunologia , Contagem de Leucócitos , Lipopolissacarídeos , Masculino , Redes e Vias Metabólicas/efeitos dos fármacos , Metabolômica , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...