Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Contam Hydrol ; 243: 103896, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34695716

RESUMO

Injection of microparticulate and nanoparticulate zero valent iron has become a regularly used method for groundwater remediation. Because of subsurface inhomogeneities, however, it is complicated to predict the ZVI transport in the subsurface, meaning that tools capable of determining its distribution after injection are highly useful. Here, we have developed a new direct-push based technique, which combines fluorescent and visible imaging, for detection of sulfidized nanoparticulate zero valent iron (S-nZVI) in the subsurface. Laboratory experiments show that the redox sensitive fluorophore riboflavin is rapidly reduced by S-nZVI within 200 s. Because the reduced riboflavin losses its green fluorescence, it can be used as S-nZVI sensitive indicator. Secondly, S-nZVI is black and tints light coloured sediment to a degree that allows detection in images. For quartz sand, 70 mg/kg of S-nZVI can be detected by visible imaging. Based on these results, a new direct-push probe (Dye-OIP) was designed based on Geoprobe's Optical Image Profiler (OIP), which was equipped with a fluorophore injection port below the OIP-unit. The injectant consisted of the redox active riboflavin mixed with the redox inactive fluorophore rhodamine WT, which fluoresces red and was used to verify that the mixture was indeed injected and detectable. Small scale experiments show that the fluorescence of this mixture in S-nZVI amended sand changes within 150 s from green with a hue of ~50 to red with a hue of ~30 when imaged with Dye-OIP. Tests of the Dye-OIP after a S-nZVI injection in a 1 m3 sized tank show that the tool could detect S-nZVI via fluorescence and visible imaging, when S-nZVI concentration was >0.2 mg per g dry sediment. Thus, these novel methods should be able to detect S-nZVI in the subsurface, without relying on infrastructure such as wells. Based on our results, the Dye-OIP could be further improved to make it suitable for regular use in the field.


Assuntos
Água Subterrânea , Nanopartículas Metálicas , Água Subterrânea/química , Ferro/química , Nanopartículas Metálicas/química , Quartzo , Poços de Água
2.
J Hazard Mater ; 401: 123327, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-32645539

RESUMO

Arsenic (As) contamination in groundwater remains a pressing global challenge. In this study, we evaluated the potential of green rust (GR), a redox-active iron phase frequently occurring in anoxic environments, to treat As contamination at a former wood preservation site. We performed long-term batch experiments by exposing synthetic GR sulfate (GRSO4) to As-free and As-spiked (6 mg L-1) natural groundwater at both 25 and 4 °C. At 25 °C, GRSO4 was metastable in As-free groundwater and transformed to GRCO3, and then fully to magnetite within 120 days; however, GRSO4 stability increased 7-fold by lowering the temperature to 4 °C, and 8-fold by adding As to the groundwater at 25 °C. Highest GRSO4 stability was observed when As was added to the groundwater at 4 °C. This stabilizing effect is explained by GR solubility being lowered by adsorbed As and/or lower temperatures, inhibiting partial GR dissolution required for transformation to GRCO3, and ultimately to magnetite. Despite these mineral transformations, all added As was removed from As-spiked samples within 120 days at 25 °C, while uptake was 2 times slower at 4 °C. Overall, we have successfully documented that GR is an important mineral substrate for As immobilization in anoxic subsurface environments.

3.
J Contam Hydrol ; 232: 103636, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32361158

RESUMO

Characterization of hydrological conditions at polluted sites is critical for understanding of contaminant distribution and transport. Standard techniques for site characterization, such as soil coring together with well installation for piezometric measurements and water sampling, allow only some insights into subsurface properties and processes. To obtain additional data, direct-push techniques are often used in soils and unconsolidated formations. The various available techniques provide high resolution information on cm to mm scale. Recently, the Optical Imaging Profiler (OIP) was developed for detection of fluorescent contaminants. Here, we have investigated the applicability of the OIP for groundwater tracing using fluorophores. Our laboratory experiments show that it is possible to qualitatively trace various fluorophores meaning that light emitted by the fluorophores can be detected by a standard digital camera sensor. The measured fluorescence depends on the number of fluorophore molecules present in the pore space adjacent to the OIP and decreases with smaller pore size as well as fluorophore concentration. In a field trial, an injected eosin Y solution could be very clearly detected after the injection within a radius of 0.5 m around the injection point. When the OIP is equipped with a second light source emitting visible light, images of the soil texture and color can be captured. Sediment color can act as a proxy for various soil properties. Tests at a second field site, indicate that detected variation in soil color depend on water saturation and redox processes. Hence, the OIP is a flexible, cost effective and multifunctional tool for characterization of contaminated sites.


Assuntos
Água Subterrânea , Poluentes do Solo , Poluentes Químicos da Água , Monitoramento Ambiental , Solo , Poluentes do Solo/análise , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...