Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ultrasound Med Biol ; 50(4): 586-591, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38272742

RESUMO

OBJECTIVE: The purpose of this study was to investigate the consistency of the changes in the elastic modulus measured with ultrasound shear wave elastography (SWE) with changes measured through mechanical testing using tendons that were artificially altered by chemical modifications. METHODS: Thirty-six canine flexor digitorum profundus tendons were used for this experiment. To mimic tendon mechanical property changes induced by tendinopathy conditions, tendons were treated with collagenase to soften the tissue by collagen digestion or with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC) to stiffen the tissues through chemical crosslinking. Tendons were randomly assigned to one of three groups: immersion in phosphate-buffered saline (PBS) as a control group (n = 12), collagenase treatment (n = 12) or EDC treatment (n = 12). Immediately following SWE measurement of each tendon, mechanical compression testing was performed as a gold standard to validate the SWE measurement. Both tests were conducted before and after treatment. RESULTS: The compressive modulus and SWE shear modulus significantly decreased after collagenase treatment. Conversely, both moduli significantly increased after EDC treatment. There was no significant difference in either modulus before or after PBS treatment. As a result of a regression analysis with the percentage change of the compressive modulus as the dependent variable and SWE shear modulus as the independent variable, the best-fit regression was found to be an exponential function and the coefficient of determination was 0.687. CONCLUSION: The changes in the compressive moduli and SWE shear moduli in tendons induced by chemical treatments were correlated by approximately 70%.


Assuntos
Técnicas de Imagem por Elasticidade , Animais , Cães , Colagenases , Módulo de Elasticidade , Tendões/diagnóstico por imagem , Ultrassonografia
2.
Plast Reconstr Surg ; 152(5): 840e-849e, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36912937

RESUMO

BACKGROUND: Flexor digitorum profundus (FDP) tendon injury is common in hand trauma, and flexor tendon reconstruction is one of the most challenging procedures in hand surgery because of severe adhesion that exceeds 25% and hinders hand function. The surface properties of a graft from extrasynovial tendons are inferior to those of the native intrasynovial FDP tendons, which has been reported as one of the major causations. Improved surface gliding ability of the extrasynovial graft is needed. Thus, this study used carbodiimide-derivatized synovial fluid and gelatin (cd-SF-gel) to modify the surface of the graft, thus improving functional outcomes using a dog in vivo model. METHODS: Forty FDP tendons from the second and fifth digits of 20 adult women underwent reconstruction with a peroneus longus (PL) autograft after creation of a tendon repair failure model for 6 weeks. Graft tendons were either coated with cd-SF-gel ( n = 20) or not. Animals were euthanized 24 weeks after reconstruction, and digits were collected after the animals were euthanized for biomechanical and histologic analyses. RESULTS: Adhesion score (cd-SF-gel, 3.15 ± 1.53; control, 5 ± 1.26; P < 0.00017), normalized work of flexion (cd-SF-gel, 0.47 ± 0.28 N-mm/degree; control, 1.4 ± 1.45 N-mm/degree; P < 0.014), and distal interphalangeal joint motion (cd-SF-gel, 17.63 ± 6.77 degrees; control, 7.07 ± 12.99 degrees; P < 0.0015) in treated grafts all showed significant differences compared with nontreated grafts. However, there was no significant difference in repair conjunction strength between the two groups. CONCLUSION: Autograft tendon surface modification with cd-SF-gel improves tendon gliding ability, reduces adhesion formation, and enhances digit function without interfering with graft-host healing. CLINICAL RELEVANCE STATEMENT: The authors demonstrate a clinically relevant and translational technology by using the patient's own synovial fluid to "synovialize" an autologous extrasynovial tendon graft to improve functional outcomes following flexor tendon reconstruction.

3.
J Bone Joint Surg Am ; 104(22): 2000-2007, 2022 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-36000752

RESUMO

BACKGROUND: The stability of a suture knot construct has been realized as an important parameter that affects the strength of flexor tendon repairs. A novel 2-strand-overhand-locking (TSOL) knot, which is not commonly used in the clinical setting, recently was reported to increase repair strength and to decrease tendon gliding resistance in a 2-strand repair technique. The purpose of the present study was to investigate the effect of the TSOL knot on tendon repair strength and gliding resistance compared with a typical surgical knot in both 2-strand and 4-strand repair techniques using an in vitro turkey flexor tendon model. METHODS: Sixty flexor digitorum profundus tendons from the long digit of the turkey foot were divided evenly into 4 groups and repaired with the following techniques: (1) a 2-strand modified Pennington repair with a square knot, (2) a 2-strand modified Pennington repair with a TSOL knot, (3) a 4-strand grasping cruciate repair with a square knot, and (4) a 4-strand grasping cruciate repair with a TSOL knot. Repaired tendons were tested for failure mode, gliding resistance, and repair strength at failure. RESULTS: The repair strength and stiffness of the 4-strand repairs were significantly higher than those of the 2-strand repairs, regardless of knot type (p < 0.05). The repair strength at failure of the TSOL knot was significantly greater than that of the square knot in 2-strand repairs (p < 0.05) but not in 4-strand repairs. The gliding resistance of the TSOL knot was significantly decreased compared with that of the square knot in both 2-strand and 4-stand repairs (p < 0.05). With regard to failure mode, the TSOL knot was less likely to fail due to knot unravelling. CONCLUSIONS: In this in vitro biomechanical study involving the use of turkey flexor tendons to compare gliding resistance and repair strength characteristics for knot-inside 2 and 4-strand repairs, the TSOL knot was associated with decreased repaired tendon gliding resistance, regardless of the number of strands used. Although the TSOL knot also increased the repair strength, the difference was only significant when 2-strand repairs were used. The results of our study support the use of the TSOL knot in the clinical setting of flexor tendon repair using 2 or 4-strand, knot-inside methods. CLINICAL RELEVANCE: In surgical repair of flexor tendons, there is substantial interest in maximizing strength while minimizing friction. This study shows the potential utility of the TSOL knot to increase repair strength while decreasing gliding resistance, particularly in 2-strand repairs.


Assuntos
Técnicas de Sutura , Suturas , Humanos , Resistência à Tração , Fenômenos Biomecânicos , Cadáver , Tendões/cirurgia
4.
Biomaterials ; 276: 121019, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34325337

RESUMO

Exosomes have multiple therapeutic targets, but the effects on healing rotator cuff tear (RCT) remain unclear. As a circulating exosome, purified exosome product (PEP) has the potential to lead to biomechanical improvement in RCT. Here, we have established a simple and efficient approach that identifies the function and underlying mechanisms of PEP on cell-cell interaction using a co-culture model in vitro. In the in vivo trial, adult female Sprague-Dawley rats underwent unilateral surgery to transect and repair the supraspinatus tendon to its insertion site with or without PEP. PEP promoted the migration and confluence of osteoblast cells and tenocytes, especially during direct cell-cell contact. Expression of potential genes for RCT in vitro and in vivo models were consistent with biomechanical tests and semiquantitative histologic scores, indicating accelerated strength and healing of the RC in response to PEP. Our observations suggest that circulating exosomes provide an effective option to improve the healing speed of RCT after surgical repair. The regeneration of enthesis following PEP treatment appears to be related to a mutually reinforcing relationship between direct cell-cell contact and PEP activity, suggesting a dual approach to the healing process.


Assuntos
Exossomos , Lesões do Manguito Rotador , Animais , Feminino , Ratos , Fenômenos Biomecânicos , Ratos Sprague-Dawley , Manguito Rotador , Lesões do Manguito Rotador/terapia , Tendões , Cicatrização
5.
J Orthop Res ; 38(8): 1845-1855, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31930553

RESUMO

Flexor tendon injuries and tendinopathy are very common but remain challenging in clinical treatment. Exosomes-based cell-free therapy appears to be a promising strategy for tendon healing, while limited studies have evaluated its impacts on tenocyte biology. The objective of this study was to characterize a novel purified exosome product (PEP) derived from plasma, as well as to explore its cellular effects on canine tenocyte biology. The transmission electron microscope revealed that exosomes of PEP present cup-shaped structures with the diameters ranged from 80 to 141 nm, and the NanoSight report presented that their size mainly concentrated around 100 nm. The enzyme-linked immunosorbent assay kits analysis showed that PEP was positive for CD63 and AChE expression, and the cellular uptake of exosomes internalized into tenocyte cytoplasm was observed. The cell growth assays displayed that tenocyte proliferation ability was enhanced by PEP solution in a dose-dependent manner. Tenogenic phenotype was preserved as is evident by that tendon-related genes expression (SCX, COL1A, COL3A1, TNMD, DCN, and MKX) were expressed insistently in a high level, while tenocytes were treated with 5% PEP solution. Furthermore, migration capability was maintained and total collagen deposition was increased. More interesting, dexamethasone-induced cellular apoptosis was attenuated during the incubation of tenocytes with a 5% PEP solution. These findings will provide the basic understandings about the PEP, and support the potential use of this biological strategy for tendon healing.


Assuntos
Exossomos/fisiologia , Tenócitos/fisiologia , Animais , Apoptose , Movimento Celular , Proliferação de Células , Colágeno/metabolismo , Dexametasona , Cães , Exossomos/química , Exossomos/ultraestrutura , Cultura Primária de Células
6.
J Hand Ther ; 33(4): 470-476, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-30792111

RESUMO

INTRODUCTION: Synergies of fingers and wrist motion have been incorporated into therapies for finger flexor tendon injuries to improve repair outcomes. Similar synergistic therapy strategies have not been well documented for the thumb. PURPOSE OF THE STUDY: The purpose of this study was to investigate the extent to which wrist motion enables a synergistic effect at the thumb in a cadaveric model by measuring flexor pollicis longus excursion and calculating the moment arm of this tendon at the wrist joint. STUDY DESIGN: This is a basic science research. METHODS: Eight fresh-frozen cadaveric arms were obtained from our anatomical bequest program. The proximal arm was fixed in neutral pronation/supination position, and motion of the wrist was guided through either flexion/extension or radial/ulnar deviation. Fingers were fixed in extension, thumb interphalangeal and metacarpophalangeal joints were fixed in neutral extension, and the carpometacarpal joint was fixed at 30° palmar abduction. The flexor pollicis longus tendon was exposed proximal to the wrist crease and connected to a rotary potentiometer to measure tendon excursion. Optical markers were attached to the hand to capture kinematics. Wrists were moved from a neutral position over the range of flexion and extension and then from the neutral position through the range of radial to ulnar deviation. Moment arms were calculated. RESULTS: Moment arm calculation indicated that the flexor pollicis longus acts as a wrist flexor over the entire motion range and as a weak radial deviator at ulnarly-deviated positions. CONCLUSIONS: This study provides a mechanistic rationale for passive interphalangeal joint motion in varying wrist positions when treating thumb flexor tendon injuries, with benefits seen primarily for wrist extension.


Assuntos
Amplitude de Movimento Articular/fisiologia , Tendões/fisiologia , Tenodese , Articulação do Punho/fisiologia , Idoso , Idoso de 80 Anos ou mais , Cadáver , Terapia por Exercício , Articulações dos Dedos/fisiologia , Humanos , Pessoa de Meia-Idade , Polegar/fisiologia
7.
Biomaterials ; 192: 189-198, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30453215

RESUMO

Reducing rotator cuff failure after repair remains a challenge due to suboptimal tendon-to-bone healing. In this study we report a novel biomaterial with engineered tendon-fibrocartilage-bone composite (TFBC) and bone marrow-derived mesenchymal stem cell sheet (BMSCS); this construct was tested for augmentation of rotator cuff repair using a canine non-weight-bearing (NWB) model. A total of 42 mixed-breed dogs were randomly allocated to 3 groups (n = 14 each). Unilateral infraspinatus tendon underwent suture repair only (control); augmentation with engineered TFBC alone (TFBC), or augmentation with engineered TFBC and BMSCS (TFBC + BMSCS). Histomorphometric analysis and biomechanical testing were performed at 6 weeks after surgery. The TFBC + BMSCS augmented repairs demonstrated superior histological scores, greater new fibrocartilage formation and collagen fiber organization at the tendon-bone interface compared with the controls. The ultimate failure load and ultimate stress were 286.80 ± 45.02 N and 4.50 ± 1.11 MPa for TFBC + BMSCS group, 163.20 ± 61.21 N and 2.60 ± 0.97 MPa for control group (TFBC + BMSCS vs control, P = 1.12E-04 and 0.003, respectively), 206.10 ± 60.99 N and 3.20 ± 1.31 MPa for TFBC group (TFBC + BMSCS vs TFBC, P = 0.009 and 0.045, respectively). In conclusion, application of an engineered TFBC and BMSCS can enhance rotator cuff healing in terms of anatomic structure, collagen organization and biomechanical strength in a canine NWB model. Combined TFBC and BMSCS augmentation is a promising strategy for rotator cuff tears and has a high potential impact on clinical practice.


Assuntos
Fibrocartilagem/química , Células-Tronco Mesenquimais/citologia , Manguito Rotador/fisiologia , Tendões/química , Alicerces Teciduais/química , Cicatrização , Animais , Materiais Biocompatíveis/química , Osso e Ossos/química , Cães , Transplante de Células-Tronco Mesenquimais , Manguito Rotador/citologia , Engenharia Tecidual
8.
J Bone Joint Surg Am ; 100(7): e42, 2018 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-29613931

RESUMO

BACKGROUND: Flexor tendon injury is common, and tendon reconstruction is indicated clinically if the primary repair fails or cannot be performed immediately after tendon injury. The purpose of the current study was to compare clinically standard extrasynovial autologous graft (EAG) tendon and intrasynovial allogeneic graft (IAG) that had both undergone biolubricant surface modification in a canine in vivo model. METHODS: Twenty-four flexor digitorum profundus (FDP) tendons from the second and fifth digits of 12 dogs were used for this study. In the first phase, a model of failed FDP tendon repair was created. After 6 weeks, the ruptured FDP tendons with a scarred digit were reconstructed with the use of either EAG or IAG tendons treated with carbodiimide-derivatized hyaluronic acid and lubricin. At 12 weeks after tendon reconstruction, the digits were harvested for functional, biomechanical, and histologic evaluations. RESULTS: The tendon failure model was a clinically relevant and reproducible model for tendon reconstruction. The IAG group demonstrated improved digit function with decreased adhesion formation, lower digit work of flexion, and improved graft gliding ability compared with the EAG group. However, the IAG group had decreased healing at the distal tendon-bone junction. Our histologic findings verified the biomechanical evaluations and, further, showed that cellular repopulation of allograft at 12 weeks after reconstruction is still challenging. CONCLUSIONS: FDP tendon reconstruction using IAG with surface modification has some beneficial effects for reducing adhesions but demonstrated inferior healing at the distal tendon-bone junction compared with EAG. These mixed results indicate that vitalization and turnover acceleration are crucial to reducing failure of reconstruction with allograft. CLINICAL RELEVANCE: Flexor tendon reconstruction is a common surgical procedure. However, postoperative adhesion formation may lead to unsatisfactory clinical outcomes. In this study, we developed a potential flexor tendon allograft using chemical and tissue-engineering approaches. This technology could improve function following tendon reconstruction.


Assuntos
Aloenxertos/fisiologia , Autoenxertos/fisiologia , Traumatismos dos Tendões/cirurgia , Tendões/cirurgia , Animais , Fenômenos Biomecânicos/fisiologia , Cães , Feminino , Glicoproteínas/farmacologia , Sobrevivência de Enxerto/fisiologia , Ácido Hialurônico/farmacologia , Lubrificantes/farmacologia , Masculino , Modelos Animais , Distribuição Aleatória , Propriedades de Superfície , Traumatismos dos Tendões/fisiopatologia , Tendões/fisiologia , Aderências Teciduais/fisiopatologia , Dedos do Pé/fisiologia , Transplante Autólogo/métodos , Transplante Homólogo/métodos , Viscossuplementos/farmacologia
9.
J Orthop Res ; 2018 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-29575268

RESUMO

This study was to test our hypothesis that flexor tendon reconstruction with an allograft revitalized with bone marrow stromal cells (BMSCs) and synovialized with carbodiimide derivatized autologous synovial fluid (cd-SYN) would result in better digit functional restoration than the conventional allograft tendon. A total of 32 flexor digital profundus tendons from the second and fifth digit of 16 dogs were created a repair failure model first. Then, failed-repaired tendons were reconstructed with either a revitalized-synovialized allograft tendon or a clinical standard autograft tendon (control group). The allograft tendon was seeded with autologous BMSCs in multiple slits and the graft surface was coated with cd-SYN. A 6 weeks after tendon reconstruction, the digits were harvested and evaluated for digit function, adhesion status, tendon gliding resistance, attachment strength, cell viability, and histologic factors. The allograft group had significantly improved digit function compared with the control group through decreased work of flexion, increased digit range of motion under 2-Newton force, and less adhesion score (p < .05). However, the distal attachment-site strength and stiffness in the allograft tendon were significantly weaker than the autografts (p < .05). No significant difference was found for gliding resistance. Histologically, allograft tendons coated with allograft had smoother surfaces and showed tendon-to-bone and tendon-to-tendon incorporation. Viable BMSCs were found in the tendon slits 6 weeks after the graft. In conclusion, cellular lubricant-based modification of allograft tendons improved digit function and reduced the adhesions compared with autograft for flexor tendon reconstruction. However, improvement of graft-to-host tendon healing is still challenging. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res.

10.
J Surg Res ; 216: 46-55, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28807213

RESUMO

BACKGROUND: Flexor tendon injuries are one of the most common hand injuries and remain clinically challenging for functional restoration. Canine and chicken have been the most commonly used animal models for flexor tendon-related research but possess several disadvantages. The purpose of this study was to explore a potential turkey model for flexor tendon research. METHODS: The third digit from human cadaveric hands, canine forepaws, turkey foot, and chicken foot were used for this study. Six digits in each of four species were studied in detail, comparing anatomy of the flexor apparatus, joint range of motion tendon excursion, tendon cross-sectional area, work of flexion, gliding resistance at the level of the A2 pulley, modulus of elasticity, suture retention strength, and histology across species. RESULTS: Anatomically, the third digit in the four species displayed structural similarities; however, the tendon cross-sectional area of the turkey and human were similar and larger than canine and chicken. Furthermore, the turkey digit resembles the human's finger with the lack of webbing between digits, similar vascularization, tendon excursion, work of flexion, gliding resistance, mechanical properties, and suture holding strength. More importantly, human and turkey tendons were most similar in histological appearance. CONCLUSIONS: Turkey flexor tendons have many properties that are comparable to human flexor tendons which would provide a clinically relevant, economical, nonhuman companion large animal model for flexor tendon research.


Assuntos
Galinhas/anatomia & histologia , Cães/anatomia & histologia , Modelos Animais , Tendões/anatomia & histologia , Perus/anatomia & histologia , Animais , Galinhas/fisiologia , Galinhas/cirurgia , Cães/fisiologia , Cães/cirurgia , Traumatismos da Mão/cirurgia , Humanos , Técnicas In Vitro , Traumatismos dos Tendões/cirurgia , Tendões/fisiologia , Tendões/cirurgia , Perus/fisiologia , Perus/cirurgia
11.
J Orthop Res ; 34(1): 154-60, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26177854

RESUMO

The purpose of the study was to test a novel treatment that carbodiimide-derivatized-hyaluronic acid-lubricin (cd-HA-lubricin) combined cell-based therapy in an immobilized flexor tendon repair in a canine model. Seventy-eight flexor tendons from 39 dogs were transected. One tendon was treated with cd-HA-lubricin plus an interpositional graft of 8 × 10(5) BMSCs and GDF-5. The other tendon was repaired without treatment. After 21 day of immobilization, 19 dogs were sacrificed; the remaining 20 dogs underwent a 21-day rehabilitation protocol before euthanasia. The work of flexion, tendon gliding resistance, and adhesion score in treated tendons were significantly less than the untreated tendons (p < 0.05). The failure strength of the untreated tendons was higher than the treated tendons at 21 and 42 days (p < 0.05). However, there is no significant difference in stiffness between two groups at day 42. Histologic analysis of treated tendons showed a smooth surface and viable transplanted cells 42 days after the repair, whereas untreated tendons showed severe adhesion formation around the repair site. The combination of lubricant and cell treatment resulted in significantly improved digit function, reduced adhesion formation. This novel treatment can address the unmet needs of patients who are unable to commence an early mobilization protocol after flexor tendon repair.


Assuntos
Transplante de Medula Óssea , Glicoproteínas/uso terapêutico , Fator 5 de Diferenciação de Crescimento/uso terapêutico , Traumatismos da Mão/cirurgia , Ácido Hialurônico/análogos & derivados , Traumatismos dos Tendões/cirurgia , Animais , Cães , Avaliação Pré-Clínica de Medicamentos , Traumatismos da Mão/tratamento farmacológico , Ácido Hialurônico/uso terapêutico , Distribuição Aleatória , Traumatismos dos Tendões/tratamento farmacológico , Transplante Autólogo
12.
J Hand Ther ; 28(4): 347-54; quiz 355, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26209161

RESUMO

INTRODUCTION: Therapy after flexor pollicis longus (FPL) repair typically mimics finger flexor management, but this ignores anatomic and biomechanical features unique to the FPL. PURPOSE OF THE STUDY: We measured FPL tendon tension in zone T2 to identify biomechanically appropriate exercises for mobilizing the FPL. METHODS: Eight human cadaver hands were studied to identify motions that generated enough force to achieve FPL movement without exceeding hypothetical suture strength. RESULTS: With the carpometacarpal and metacarpophalangeal joints blocked, appropriate forces were produced for both passive interphalangeal (IP) motion with 30° wrist extension and simulated active IP flexion from 0° to 35° with the wrist in the neutral position. DISCUSSION: This work provides a biomechanical basis for safely and effectively mobilizing the zone T2 FPL tendon. CONCLUSION: Our cadaver study suggests that it is safe and effective to perform early passive and active exercise to an isolated IP joint. LEVEL OF EVIDENCE: NA.


Assuntos
Articulações dos Dedos/fisiologia , Movimento/fisiologia , Tendões/fisiologia , Polegar/fisiologia , Articulação do Punho/fisiologia , Idoso , Idoso de 80 Anos ou mais , Fenômenos Biomecânicos/fisiologia , Cadáver , Humanos , Pessoa de Meia-Idade
13.
J Bone Joint Surg Am ; 97(12): 972-8, 2015 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-26085530

RESUMO

BACKGROUND: Functional restoration is the major concern after flexor tendon reconstruction in the hand. The purpose of the present study was to investigate the effects of modifying the surface of extrasynovial tendon autografts with carbodiimide-derivatized synovial fluid with gelatin (cd-SF-G) on functional outcomes of flexor tendon reconstruction using a canine model. METHODS: The second and fifth flexor digitorum profundus tendons from eleven dogs were transected and repaired in zone II. The dogs then had six weeks of free activity leading to tendon rupture and scar formation (the repair-failure phase). In the reconstruction phase, two autologous peroneus longus tendons from each dog were harvested; one tendon was coated with cd-SF-G and the other, with saline solution, as a control. A non-weight-bearing rehabilitation protocol was followed for six weeks after reconstruction. The digits were then harvested and evaluations of function, adhesion status, gliding resistance, attachment strength, cell viability, and histology were performed. RESULTS: The tendons coated with cd-SF-G demonstrated significantly lower values (mean and standard deviation) compared with the saline-solution group for work of flexion (0.63 ± 0.24 versus 1.34 ± 0.42 N-mm/deg), adhesion score (3.5 ± 1.6 versus 6.1 ± 1.3), proximal adhesion breaking force (8.6 ± 3.2 versus 20.2 ± 10.2 N), and gliding resistance (0.26 ± 0.08 versus 0.46 ± 0.22 N) (p < 0.05). There was no significant difference between the cd-SF-G and saline-solution groups (p > 0.05) in distal attachment-site strength (56.9 ± 28.4 versus 77.2 ± 36.2 N), stiffness (19 ± 7.5 versus 24.5 ± 14.5 N/mm), and compressive modulus from indentation testing (4.37 ± 1.26 versus 3.98 ± 1.24 N/mm). Histological analysis showed that tendons coated with cd-SF-G had smoother surfaces and demonstrated tendon-to-bone and tendon-to-tendon incorporation. No significant difference in viable cell count between the two groups was observed on tendon culture. CONCLUSIONS: Modification of the flexor tendon surface with cd-SF-G significantly improved digital function and reduced adhesion formation without affecting graft healing and stiffness. CLINICAL RELEVANCE: This study used native synovial fluid as a basic lubricating reagent to treat a tendon graft in vivo, a novel avenue for improving clinical outcomes of flexor tendon reconstruction. This methodology may also apply to other surgical procedures where postoperative adhesions impair function.


Assuntos
Líquido Sinovial , Tendões/cirurgia , Animais , Carbodi-Imidas/farmacologia , Cães , Gelatina , Modelos Animais , Procedimentos Ortopédicos/métodos , Propriedades de Superfície , Líquido Sinovial/efeitos dos fármacos , Tendões/transplante , Aderências Teciduais/prevenção & controle
14.
J Orthop Res ; 33(5): 731-7, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25665071

RESUMO

The purpose of this study was to investigate the biomechanical properties of modified repair techniques for flexor tendon reconstruction and the effects of surface modification using carbodiimide-derivatized synovial fluid plus gelatin (cd-SF-G), compared to the traditional repair techniques. The second and fifth digits from 16 canine forepaws were randomly divided into 4 groups: (1) traditional graft repairs (TGR group) including distal Bunnell repair and proximal Pulvertaft weave repair; (2) modified graft repairs (MGR group) including distal graft bony attachment repair and proximal step-cut repair; (3) group TGR coated with cd-SF-G (TGR-C group); and (4) group MGR coated with cd-SF-G (MGR-C group). Digit normalized work of flexion (nWOF), ultimate failure strength, and stiffness were measured. The nWOF in MGR group was significantly less than TGR group (p < 0.05). The nWOF in groups treated with cd-SF-G was significantly less than their untreated counterparts (p < 0.05). Ultimate load to failure of the MGR-C group was significantly greater than the TGR-C group (p < 0.05), but no significant difference in stiffness was found between these two groups. The modified techniques cannot only improve tendon gliding abilities but can also improve breaking strength. Additionally, surface modification with cd-SF-G significantly decreased the work of flexion.


Assuntos
Procedimentos Ortopédicos/métodos , Traumatismos dos Tendões/cirurgia , Tendões/transplante , Animais , Fenômenos Biomecânicos , Cães , Distribuição Aleatória , Procedimentos de Cirurgia Plástica/métodos
15.
Clin Orthop Relat Res ; 472(9): 2569-78, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24906811

RESUMO

BACKGROUND: Adhesions and poor healing are complications of flexor tendon repair. QUESTIONS/PURPOSES: The purpose of this study was to investigate a tissue engineering approach to improve functional outcomes after flexor tendon repair in a canine model. METHODS: Flexor digitorum profundus tendons were lacerated and repaired in 60 dogs that were followed for 10, 21, or 42 days. One randomly selected repair from either the second or fifth digit in one paw in each dog was treated with carbodiimide-derivatized hyaluronic acid, gelatin, and lubricin plus autologous bone marrow stromal cells stimulated with growth and differentiation factor 5; control repair tendons were not treated. Digits were analyzed by adhesion score, work of flexion, tendon-pulley friction, failure force, and histology. RESULTS: In the control group, 35 of 52 control tendons had adhesions, whereas 19 of 49 treated tendons had adhesions. The number of repaired tendons with adhesions in the control group was greater than the number in the treated group at all three times (p = 0.005). The normalized work of flexion in treated tendons was 0.28 (± 0.08), 0.29 (± 0.19), and 0.32 (± 0.22) N/mm/° at Day 10, Day 21, and Day 42 respectively, compared with the untreated tendons of 0.46 (± 0.19) at Day 10 (effect size, 1.5; p = 0.01), 0.77 (± 0.49) at Day 21 (effect size, 1.4; p < 0.001), and 1.17 (± 0.82) N/mm/° at Day 42 (effect size, 1.6; p < 0.001). The friction data were comparable to the work of flexion data at all times. The repaired tendon failure force in the untreated group at 42 days was 70.2 N (± 8.77), which was greater than the treated tendons 44.7 N (± 8.53) (effect size, 1.9; p < 0.001). Histologically, treated repairs had a smooth surface with intrinsic healing, whereas control repairs had surface adhesions and extrinsic healing. CONCLUSIONS: Our study provides evidence that tissue engineering coupled with restoration of tendon gliding can improve the quality of tendon healing in a large animal in vivo model. CLINICAL RELEVANCE: Tissue engineering may enhance intrinsic tendon healing and thus improve the functional outcomes of flexor tendon repair.


Assuntos
Distinções e Prêmios , Pesquisa Biomédica/métodos , Transplante de Células/métodos , Citocinas/uso terapêutico , Procedimentos Ortopédicos/métodos , Ortopedia , Procedimentos de Cirurgia Plástica/métodos , Animais , Modelos Animais de Doenças , Cães , Lubrificantes , Traumatismos dos Tendões/cirurgia
16.
Plast Reconstr Surg ; 133(5): 628e-637e, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24445876

RESUMO

BACKGROUND: Using allograft is an attractive alternative for flexor tendon reconstruction because of the lack of donor-site morbidity, and better matching to the intrasynovial environment. The purpose of this study was to use biological lubricant molecules to modify the graft surface to decrease adhesions and improve digit function. METHODS: Twenty-eight flexor digitorum profundus tendons from the second and fifth digits of 14 dogs were lacerated and repaired to create a model with repair failure and scar digit for tendon reconstruction. Six weeks after the initial operation, the tendons were reconstructed with flexor digitorum profundus allograft tendons obtained from canine cadavers. One graft tendon in each dog was treated with saline as a control and the other was treated with carbodiimide-derivatized hyaluronic acid and gelatin plus lubricin. Six weeks postoperatively, digit function, graft mechanics, and biology were analyzed. RESULTS: Allograft tendons treated with carbodiimide-derivatized hyaluronic acid-lubricin had decreased adhesions at the proximal tendon/graft repair and within the flexor sheath, improved digit function, and increased graft gliding ability. The treatment also reduced the strength at the distal tendon-to-bone repair, but the distal attachment rupture rate was similar for both graft types. Histologic evaluation showed that viable cells migrated to the allograft, but these were limited to the tendon surface. CONCLUSIONS: Carbodiimide-derivatized hyaluronic acid-lubricin treatment of tendon allograft improves digit functional outcomes after flexor tendon reconstruction. However, delayed bone-to-tendon healing should be a caution. Furthermore, the cell infiltration into the allograft tendon substance should be a target for future studies, to shorten the allograft self-regeneration period.


Assuntos
Glicoproteínas/farmacologia , Ácido Hialurônico/farmacologia , Procedimentos de Cirurgia Plástica/métodos , Traumatismos dos Tendões/cirurgia , Tendões/transplante , Aderências Teciduais/prevenção & controle , Animais , Carbodi-Imidas/farmacologia , Cães , Membro Anterior/cirurgia , Gelatina/farmacologia , Lacerações/cirurgia , Modelos Animais , Recuperação de Função Fisiológica/efeitos dos fármacos , Tendões/cirurgia , Aderências Teciduais/patologia , Transplante Homólogo , Cicatrização/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...