Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 15(11)2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-38004542

RESUMO

Topical delivery systems (TDSs) enable the direct transport of analgesics into areas of localized pain and thus minimize the side effects of administration routes that rely on systemic drug distribution. For musculoskeletal pain, clinicians frequently prescribe topical products containing lidocaine or diclofenac. This study assessed whether drug delivery from a TDS into muscle tissue occurs mainly via direct diffusion or systemic transport. An investigational TDS containing 108 mg lidocaine (SP-103, 5.4% lidocaine), a commercially available TDS containing 36 mg lidocaine (ZTlido®, 1.8% lidocaine), and a topical pain relief gel (Pennsaid®, 2% diclofenac) were tested. Using open flow microperfusion (OFM), interstitial fluid from the dermis, subcutaneous adipose tissue (SAT), and muscle was continuously sampled to assess drug penetration in all tissue layers. Ex vivo and in vivo experiments showed a higher diffusive transport of lidocaine compared to diclofenac. The data showed a clear contribution of diffusive transport to lidocaine concentration, with SP-103 5.4% resulting in a significantly higher lidocaine concentration in muscle tissue than commercially available ZTlido® (p = 0.008). These results indicate that SP-103 5.4% is highly effective in delivering lidocaine into muscle tissue in areas of localized pain for the treatment of musculoskeletal pain disorders (e.g., lower back pain).

2.
Biomedicines ; 10(4)2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35453606

RESUMO

The treatment of chronic wounds still challenges modern medicine because of these wounds' heterogenic pathophysiology. Processes such as inflammation, ischemia and bacterial infection play major roles in the progression of a chronic wound. In recent years, preclinical wound models have been used to understand the underlying processes of chronic wound formation. However, the wound models used to investigate chronic wounds often lack translatability from preclinical models to patients, and often do not take exaggerated inflammation into consideration. Therefore, we aimed to investigate prolonged inflammation in a porcine wound model by using resiquimod, a TLR7 and TLR8 agonist. Pigs received full thickness excisional wounds, where resiquimod was applied daily for 6 days, and untreated wounds served as controls. Dressing change, visual documentation and wound scoring were performed daily. Biopsies were collected for histological as well as gene expression analysis. Resiquimod application on full thickness wounds induced a visible inflammation of wounds, resulting in delayed wound healing compared to non-treated control wounds. Gene expression analysis revealed high levels of IL6, MMP1 and CD68 expression after resiquimod application, and histological analysis showed increased immune cell infiltration. By using resiquimod, we were able to show that prolonged inflammation delayed wound healing, which is often observed in chronic wounds in patients. The model we used shows the importance of inflammation in wound healing and gives an insight into the progression of chronic wounds.

3.
Burns ; 46(8): 1924-1932, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32660829

RESUMO

BACKGROUND: Burn wound progression is a significant problem as burns initially thought to be superficial can actually become full thickness over time. Cooling is an efficient method to reduce burn wound conversion. However, if the cooling agent is below room temperature, depending on the wound size the patient is at risk of hypothermia. Additionally, tissue perfusion is reduced leading to an aggravation of burn wound progression. We investigated if wound dressings based on non-pre-cooled bacterial nanocellulose (BNC) with a high water content cool a burn just by evaporation and reduce the intradermal damages in the skin. MATERIAL AND METHODS: In a human ex-vivo model, skin explants underwent contact burns using a 100 °C hot steel block. The burned areas were divided into two groups of which one was cooled with a BNC-based wound dressing. Intradermal temperature probes measured temperature in cooled and uncooled burn sites over 24 h. For histological assessments of the burned areas biopsies were taken at different time points. High mobility group box-1 (HMBG1) staining served as marker for cell vitality and necrosis in the different skin layers. RESULTS: Intradermal temperature measurement showed that application of the BNC-based wound dressing reduced temperature significantly in burned skin. This cooling effect resulted in a maximum temperature difference of 6.4 ± 1.9 °C and a significant mean reduction of the area under the curve in the first hour after burn of 62% (p < 0.0001). The histological results showed less necrosis and less dermal-epidermal separation in the cooled areas. The HMGB1 staining revealed more vital cells in the cooled group than in the uncooled group. CONCLUSION: Based on our results, BNC-based wound dressings cool a burn. Intradermal temperature as well as thermal damage of the tissue was reduced. The tested BNC-based wound dressing can be used without pre-cooling to cool a burn as well as to reduce the burn BNC-based wound progression through its evaporation cooling effect.


Assuntos
Temperatura Corporal/efeitos dos fármacos , Queimaduras/tratamento farmacológico , Modelos Biológicos , Cicatrização/fisiologia , Área Sob a Curva , Áustria , Queimaduras/complicações , Humanos , Curva ROC , Cicatrização/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...