Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Vaccines (Basel) ; 10(10)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36298451

RESUMO

Vaccines are needed to disrupt or prevent continued outbreaks of filoviruses in humans across Western and Central Africa, including outbreaks of Marburg virus (MARV). As part of a filovirus vaccine product development plan, it is important to investigate dose response early in preclinical development to identify the dose range that may be optimal for safety, immunogenicity, and efficacy, and perhaps demonstrate that using lower doses is feasible, which will improve product access. To determine the efficacious dose range for a manufacturing-ready live recombinant vesicular stomatitis virus vaccine vector (rVSV∆G-MARV-GP) encoding the MARV glycoprotein (GP), a dose-range study was conducted in cynomolgus macaques. Results showed that a single intramuscular injection with as little as 200 plaque-forming units (PFUs) was 100% efficacious against lethality and prevented development of viremia and clinical pathologies associated with MARV Angola infection. Across the vaccine doses tested, there was nearly a 2000-fold range of anti-MARV glycoprotein (GP) serum IgG titers with seroconversion detectable even at the lowest doses. Virus-neutralizing serum antibodies also were detected in animals vaccinated with the higher vaccine doses indicating that vaccination induced functional antibodies, but that the assay was a less sensitive indicator of seroconversion. Collectively, the data indicates that a relatively wide range of anti-GP serum IgG titers are observed in animals that are protected from disease implying that seroconversion is positively associated with efficacy, but that more extensive immunologic analyses on samples collected from our study as well as future preclinical studies will be valuable in identifying additional immune responses correlated with protection that can serve as markers to monitor in human trials needed to generate data that can support vaccine licensure in the future.

2.
EBioMedicine ; 82: 104203, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35915046

RESUMO

BACKGROUND: To investigate a vaccine technology with potential to protect against coronavirus disease 2019 (COVID-19) and reduce transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) with a single vaccine dose, we developed a SARS-CoV-2 candidate vaccine using the live vesicular stomatitis virus (VSV) chimeric virus approach previously used to develop a licensed Ebola virus vaccine. METHODS: We generated a replication-competent chimeric VSV-SARS-CoV-2 vaccine candidate by replacing the VSV glycoprotein (G) gene with coding sequence for the SARS-CoV-2 Spike glycoprotein (S). Immunogenicity of the lead vaccine candidate (VSV∆G-SARS-CoV-2) was evaluated in cotton rats and golden Syrian hamsters, and protection from SARS-CoV-2 infection also was assessed in hamsters. FINDINGS: VSV∆G-SARS-CoV-2 delivered with a single intramuscular (IM) injection was immunogenic in cotton rats and hamsters and protected hamsters from weight loss following SARS-CoV-2 challenge. When mucosal vaccination was evaluated, cotton rats did not respond to the vaccine, whereas mucosal administration of VSV∆G-SARS-CoV-2 was found to be more immunogenic than IM injection in hamsters and induced immunity that significantly reduced SARS-CoV-2 challenge virus loads in both lung and nasal tissues. INTERPRETATION: VSV∆G-SARS-CoV-2 delivered by IM injection or mucosal administration was immunogenic in golden Syrian hamsters, and both vaccination methods effectively protected the lung from SARS-CoV-2 infection. Hamsters vaccinated by mucosal application of VSV∆G-SARS-CoV-2 also developed immunity that controlled SARS-CoV-2 replication in nasal tissue. FUNDING: The study was funded by Merck Sharp & Dohme, Corp., a subsidiary of Merck & Co., Inc., Rahway, NJ, USA, and The International AIDS Vaccine Initiative, Inc. (IAVI), New York, USA. Parts of this research was supported by the Biomedical Advanced Research and Development Authority (BARDA) and the Defense Threat Reduction Agency (DTRA) of the US Department of Defense.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Animais , Cricetinae , Humanos , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19/imunologia , Mesocricetus , SARS-CoV-2 , Vírus da Estomatite Vesicular Indiana/genética , Imunogenicidade da Vacina
3.
Clin Vaccine Immunol ; 22(5): 516-25, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25761459

RESUMO

The envelope (E) protein of flaviviruses includes three domains, EI, EII, and EIII, and is the major protective antigen. Because EIII is rich in type-specific and subcomplex-specific neutralizing epitopes and is easy to express, it is particularly attractive as a recombinant vaccine antigen. VaxInnate has developed a vaccine platform that genetically links vaccine antigens to bacterial flagellin, a Toll-like receptor 5 ligand. Here we report that tetravalent dengue vaccines (TDVs) consisting of four constructs, each containing two copies of EIII fused to flagellin (R3.2x format), elicited robust and long-lived neutralizing antibodies (geometric mean titers of 200 to 3,000), as measured with a 50% focus reduction neutralization test (FRNT50). In an immunogenicity study, rhesus macaques (n = 2) immunized subcutaneously with 10 µg or 90 µg of TDV three or four times, at 4- to 6-week intervals, developed neutralizing antibodies to four dengue virus (DENV) serotypes (mean post-dose 3 FRNT50 titers of 102 to 601). In an efficacy study, rhesus macaques (n = 4) were immunized intramuscularly with 16 µg or 48 µg of TDV or a placebo control three times, at 1-month intervals. The animals that received 48-µg doses of TDV developed neutralizing antibodies against the four serotypes (geometric mean titers of 49 to 258) and exhibited reduced viremia after DENV-2 challenge, with a group mean viremia duration of 1.25 days and 2 of 4 animals being completely protected, compared to the placebo-treated animals, which all developed viremia, with a mean duration of 4 days. In conclusion, flagellin-EIII fusion vaccines are immunogenic and partially protective in a nonhuman primate model.


Assuntos
Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Vacinas contra Dengue/imunologia , Vírus da Dengue/imunologia , Dengue/prevenção & controle , Vacinas de Subunidades Antigênicas/imunologia , Animais , Anticorpos Neutralizantes/biossíntese , Anticorpos Antivirais/biossíntese , Citocinas/sangue , Citocinas/imunologia , Vacinas contra Dengue/administração & dosagem , Vírus da Dengue/genética , Modelos Animais de Doenças , Flagelina/administração & dosagem , Flagelina/imunologia , Injeções Subcutâneas , Macaca mulatta/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Testes de Neutralização , Receptor 5 Toll-Like/imunologia , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/imunologia , Vacinas de Subunidades Antigênicas/administração & dosagem , Viremia/prevenção & controle
4.
Vaccine ; 32(34): 4317-23, 2014 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-24950354

RESUMO

Previously, we demonstrated that for H1N1 and H5N1 influenza strains, the globular head of the hemagglutinin (HA) antigen fused to flagellin of Salmonella typhimurium fljB (STF2) is highly immunogenic in preclinical models and man (Song et al. (2008) [13]; Song et al. (2009) [14]; Taylor et al. (2012) [12]). Further we showed that the vaccine format, or point of attachment of the vaccine antigen to flagellin, can dramatically affect the immunogenicity and safety profile of the vaccine. However, Influenza B vaccines based on these formats are poor triggers of TLR5 and consequently are poorly immunogenic. Through rational design, here we show that we have identified a fusion position within domain 3 of flagellin that improves TLR5 signaling and consequently, immunogenicity of multiple influenza B vaccines. Our results demonstrate that, similar to influenza A strains, the protective subunit of the influenza B HA can be fused to flagellin and produced in a standard prokaryotic expression system thereby allowing for cost and time efficient production of multivalent seasonal influenza vaccines.


Assuntos
Flagelina/imunologia , Vírus da Influenza B/imunologia , Vacinas contra Influenza/imunologia , Receptor 5 Toll-Like/agonistas , Sequência de Aminoácidos , Animais , Feminino , Testes de Inibição da Hemaglutinação , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , Testes de Neutralização , Infecções por Orthomyxoviridae/prevenção & controle , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/imunologia , Receptor 5 Toll-Like/imunologia
5.
Vaccine ; 30(48): 6833-8, 2012 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-23000130

RESUMO

In order to meet the global demand for rapid production of pandemic influenza vaccines, we have developed a recombinant fusion vaccine platform in which the globular head of hemagglutinin (HA) antigen is genetically fused to bacterial flagellin (a TLR5 ligand). These flagellin-HA fusion vaccine candidates elicit highly protective immunity against a lethal challenge with 2009 pandemic H1N1 (Liu, et al. PLoS ONE 2011; 6:e20928) or H5N1 influenza A/Vietnam/1203/04 (A/VN) infections in mice (Song, et al. Vaccine 2009;27:5875-88). Here we provide the first evidence showing that two A/VN vaccine candidates elicited HA-specific IgG, reduced nasal virus shedding, and conferred full protection against a lethal A/VN infection in ferrets. Furthermore, we show that similar flagellin-HA vaccine candidates of two other H5N1 HPAIV are immunogenic and/or efficacious in mice. Vaccines of A/Indonesia/5/05 (A/IN) induced significant HAI titers to homologous and heterologous A/Anhui/1/05 (A/AN) H5N1 viruses. Two subcutaneous immunizations with doses of either 0.3 µg or 3 µg of A/IN candidates resulted in ≥ 2.5 log(10) unit reduction in day 5 lung virus titer and 90-100% protection against a lethal A/IN challenge in mice. Both R3.HA5 IN and R3.2xHA5 IN vaccines elicited robust neutralizing antibody responses that last for at least 9 months and demonstrated a significant anamnestic antibody response upon further booster immunization. Finally, we found that two vaccine candidates of A/AN induced significant HAI titers in mice. Taken together, our recombinant flagellin-HA platform has been successfully used to generate potent H5N1 HPAIV vaccine candidates. These promising preclinical results justify the advancement of these candidates into the clinic.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Flagelina/administração & dosagem , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Virus da Influenza A Subtipo H5N1/imunologia , Vacinas contra Influenza/imunologia , Adjuvantes Imunológicos/genética , Animais , Anticorpos Antivirais/sangue , Modelos Animais de Doenças , Furões , Flagelina/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/administração & dosagem , Imunoglobulina G/sangue , Vacinas contra Influenza/administração & dosagem , Vacinas contra Influenza/genética , Injeções Subcutâneas , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Mucosa Nasal/virologia , Infecções por Orthomyxoviridae/prevenção & controle , Proteínas Recombinantes de Fusão/administração & dosagem , Proteínas Recombinantes de Fusão/genética , Análise de Sobrevida , Vacinação/métodos , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Eliminação de Partículas Virais
6.
PLoS One ; 6(6): e20928, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21687743

RESUMO

We have previously demonstrated that the globular head of the hemagglutinin (HA) antigen fused to flagellin of Salmonella typhimurium fljB (STF2, a TLR5 ligand) elicits protective immunity to H1N1 and H5N1 lethal influenza infections in mice (Song et al., 2008, PLoS ONE 3, e2257; Song et al., 2009, Vaccine 27, 5875-5888). These fusion proteins can be efficiently and economically manufactured in E. coli fermentation systems as next generation pandemic and seasonal influenza vaccines. Here we report immunogenicity and efficacy results of three vaccine candidates in which the HA globular head of A/California/07/2009 (H1N1) was fused to STF2 at the C-terminus (STF2.HA1), in replace of domain 3 (STF2R3.HA1), or in both positions (STF2R3.2xHA1). For all three vaccines, two subcutaneous immunizations of BALB/c mice with doses of either 0.3 or 3 µg elicit robust neutralizing (HAI) antibodies, that lead to > = 2 Log(10) unit reduction in day 4 lung virus titer and full protection against a lethal A/California/04/2009 challenge. Vaccination with doses as low as 0.03 µg results in partial to full protection. Each candidate, particularly the STF2R3.HA1 and STF2R3.2xHA1 candidates, elicits robust neutralizing antibody responses that last for at least 8 months. The STF2R3.HA1 candidate, which was intermediately protective in the challenge models, is more immunogenic than the H1N1 components of two commercially available trivalent inactivated influenza vaccines (TIVs) in mice. Taken together, the results demonstrate that all three vaccine candidates are highly immunogenic and efficacious in mice, and that the STF2R3.2xHA1 format is the most effective candidate vaccine format.


Assuntos
Flagelina/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Vírus da Influenza A Subtipo H1N1/imunologia , Infecções por Orthomyxoviridae/epidemiologia , Pandemias/prevenção & controle , Proteínas Recombinantes de Fusão/imunologia , Vacinas Virais/imunologia , Animais , Feminino , Flagelina/química , Vírus da Influenza A Subtipo H1N1/patogenicidade , Virus da Influenza A Subtipo H5N1/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Modelos Moleculares , Infecções por Orthomyxoviridae/prevenção & controle , Estrutura Terciária de Proteína
7.
Vaccine ; 27(42): 5875-84, 2009 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-19654064

RESUMO

Transmission of highly pathogenic avian influenza (HPAI) between birds and humans is an ongoing threat that holds potential for the emergence of a pandemic influenza strain. A major barrier to an effective vaccine against avian influenza has been the generally poor immunopotency of many of the HPAI strains coupled with the manufacturing constraints employing conventional methodologies. Fusion of flagellin, a toll-like receptor-5 ligand, to vaccine antigens has been shown to enhance the immune response to the fused antigen in preclinical studies. Here, we have evaluated the immunogenicity and efficacy of a panel of flagellin-based hemagglutinin (HA) globular head fusion vaccines in inbred mice. The HA globular head of these vaccines is derived from the A/Vietnam/1203/04 (VN04; H5N1) HA molecule. We find that replacement of domain D3 of flagellin with the VN04 HA globular head creates a highly effective vaccine that elicits protective HAI titers which protect mice against disease and death in a lethal challenge model.


Assuntos
Flagelina/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Virus da Influenza A Subtipo H5N1/imunologia , Vacinas contra Influenza/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Animais , Linhagem Celular , Feminino , Flagelina/metabolismo , Testes de Inibição da Hemaglutinação , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Orthomyxoviridae/imunologia , Proteínas Recombinantes/imunologia , Receptor 5 Toll-Like/metabolismo
8.
PLoS One ; 3(5): e2257, 2008 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-18493310

RESUMO

It is known that physical linkage of TLR ligands and vaccine antigens significantly enhances the immunopotency of the linked antigens. We have used this approach to generate novel influenza vaccines that fuse the globular head domain of the protective hemagglutinin (HA) antigen with the potent TLR5 ligand, flagellin. These fusion proteins are efficiently expressed in standard E. coli fermentation systems and the HA moiety can be faithfully refolded to take on the native conformation of the globular head. In mouse models of influenza infection, the vaccines elicit robust antibody responses that mitigate disease and protect mice from lethal challenge. These immunologically potent vaccines can be efficiently manufactured to support pandemic response, pre-pandemic and seasonal vaccines.


Assuntos
Vacinas contra Influenza , Estações do Ano , Vacinas Sintéticas , Animais , Anticorpos Antivirais/imunologia , Ensaio de Imunoadsorção Enzimática , Epitopos/química , Epitopos/imunologia , Escherichia coli/genética , Vírus da Influenza A/imunologia , Vacinas contra Influenza/administração & dosagem , Vacinas contra Influenza/genética , Vacinas contra Influenza/imunologia , Camundongos , Testes de Neutralização , Conformação Proteica , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...