Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 11(38): 34878-34888, 2019 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-31462041

RESUMO

Traces (ppm to ppb level) of airborne contaminants such as CrO2(OH)2 and SO2 irreversibly degrade the electrochemical activity of air electrodes in high-temperature electrochemical devices such as solid oxide fuel cells by retarding oxygen reduction reactions. The use of getter has been proposed as a cost-effective strategy to mitigate the electrode poisoning. However, owing to the harsh operating conditions (i.e., exposure to heat and moisture), the long-term durability of getter materials remains a considerable challenge. In this study, we report our findings on strontium manganese oxide (SMO) as a robust getter material for cocapture of airborne Cr and S contaminants. The SMO getter with a 3D honeycomb architecture, fabricated via slurry dip-coating, successfully maintains the electrochemical activity of solid oxide cells under the flow of gaseous Cr and S species, validating the getter's capability of capturing traces of Cr and S contaminants. Investigations found that both Sr and Mn cations contribute to the absorption reaction and that the reaction processes are accompanied by morphological elongation in the form of SrSO4 nanorods and SrCrO4 whiskers, which favors continued absorption and reaction of incoming S and Cr contaminants. The SMO getter also displays robust stability at high temperatures and in humid environments without phase transformation and hydrolysis. These results demonstrate the feasibility of the use of SMO getter under severe operating conditions representative of high-temperature electrochemical systems.

2.
Materials (Basel) ; 11(11)2018 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-30400173

RESUMO

Solid oxide electrochemical systems, such as solid oxide fuel cells (SOFC), solid oxide electrolysis cells (SOEC), and oxygen transport membranes (OTM) enable clean and reliable production of energy or fuel for a range of applications, including, but not limited to, residential, commercial, industrial, and grid-support. These systems utilize solid-state ceramic oxides which offer enhanced stability, fuel flexibility, and high energy conversion efficiency throughout operation. However, the nature of system conditions, such as high temperatures, complex redox atmosphere, and presence of volatile reactive species become taxing on solid oxide materials and limit their viability during long-term operation. Ongoing research efforts to identify the material corrosion and degradation phenomena, as well as discover possible mitigation techniques to extend material efficiency and longevity, is the current focus of the research and industrial community. In this review, degradation processes in select solid oxide electrochemical systems, system components, and comprising materials will be discussed. Overall degradation phenomena are presented and certain degradation mechanisms are discussed. State-of-the-art technologies to mitigate or minimize the above-mentioned degradation processes are presented.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...