Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mutagenesis ; 37(2): 76-88, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-34313790

RESUMO

A validation exercise of the hen's egg test for micronucleus induction was finalised with a very good predictivity based on the analysis of micronuclei in peripheral erythrocytes of fertilised chicken eggs (Reisinger et al. The hen's egg test for micronucleus-induction (HET-MN): validation data set. Mutagenesis, this issue). For transparency reasons this complementary publication provides further details on the assay especially as it was the first validation study in the field of genotoxicity testing involving the use of chicken eggs. Thus, the experimental protocol is described in detail and is complemented by a scoring atlas for microscopic analysis in blood cells. In addition, general characteristics of the test system, which is able to mirror the systemic availability of test compounds, are delineated: the test compound passes the egg membrane and is taken up by the blood vessels of the underlying chorioallantoic membrane. Subsequently, it is distributed by the circulating blood, metabolised by the developing liver and the yolk sac membrane and finally excreted into the allantois, a bladder equivalent. In specific, the suitability of the test system for genotoxicity testing is shown by, inter alia, a low background DNA damage in a comprehensive historical control database. In addition, the state-of-the-art statistical method used to evaluate obtained data is delineated. It combines laboratory-specific effect threshold with the Umbrella-Williams test, a statistical model also of interest for other genotoxicity test methods.


Assuntos
Galinhas , Mutagênicos , Animais , Ovos , Feminino , Testes para Micronúcleos/métodos , Testes de Mutagenicidade , Mutagênicos/toxicidade
2.
Mutagenesis ; 37(2): 61-75, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-34080017

RESUMO

The classical in vitro genotoxicity test battery is known to be sensitive for indicating genotoxicity. However, a high rate of 'misleading positives' was reported when three assays were combined as required by several legislations. Despite the recent optimisations of the standard in vitro tests, two gaps could hardly be addressed with assays based on 2D monolayer cell cultures: the route of exposure and a relevant intrinsic metabolic capacity to transform pro-mutagens into reactive metabolites. Following these considerations, fertilised chicken eggs have been introduced into genotoxicity testing and were combined with a classical read-out parameter, the micronucleus frequency in circulating erythrocytes, to develop the hen's egg test for micronucleus induction (HET-MN). As a major advantage, the test mirrors the systemic availability of compounds after oral exposure by reflecting certain steps of Absorption, Distribution, Metabolism, Excretion (ADME) without being considered as an animal experiment. The assay is supposed to add to a toolbox of assays to follow up on positive findings from initial testing with classical in vitro assays. We here report on a validation exercise, in which >30 chemicals were tested double-blinded in three laboratories. The specificity and sensitivity of the HET-MN were calculated to be 98 and 84%, respectively, corresponding to an overall accuracy of 91%. A detailed protocol, which includes a picture atlas detailing the cell and micronuclei analysis, is published in parallel (Maul et al. Validation of the hen's egg test for micronucleus induction (HET-MN): detailed protocol including scoring atlas, historical control data and statistical analysis).


Assuntos
Galinhas , Mutagênicos , Animais , Feminino , Dano ao DNA , Testes para Micronúcleos/métodos , Testes de Mutagenicidade , Mutagênicos/toxicidade
3.
Mutagenesis ; 36(1): 19-35, 2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-32152633

RESUMO

As part of the safety assessment process, all industrial sectors employ genotoxicity test batteries, starting with well-established in vitro assays. However, these batteries have limited predictive capacity for the in vivo situation, which may result in unnecessary follow-up in vivo testing or the loss of promising substances where animal tests are prohibited or not desired. To address this, a project involving regulators, academia and industry was established to develop and validate in vitro human skin-based genotoxicity assays for topically exposed substances, such as cosmetics ingredients. Here, we describe the validation of the 3D reconstructed skin (RS) Comet assay. In this multicenter study, chemicals were applied topically three times to the skin over 48 h. Isolated keratinocytes and fibroblasts were transferred to slides before electrophoresis and the resulting comet formation was recorded as % tail DNA. Before decoding, results of the validation exercise for 32 substances were evaluated by an independent statistician. There was a high predictive capacity of this assay when compared to in vivo outcomes, with a sensitivity of 77 (80)%, a specificity of 88 (97)% and an overall accuracy of 83 (92)%. The numbers reflect the calls of the performing laboratories in the coded phase, whereas those in parenthesis reflect calls according to the agreed evaluation criteria. Intra- and inter-laboratory reproducibility was also very good, with a concordance of 93 and 88%, respectively. These results generated with the Phenion® Full-Thickness skin model demonstrate its suitability for this assay, with reproducibly low background DNA damage and sufficient metabolic capacity to activate pro-mutagens. The validation outcome supports the use of the RS Comet assay to follow up positive results from standard in vitro genotoxicity assays when the expected route of exposure is dermal. Based on the available data, the assay was accepted recently into the OECD test guideline development program.


Assuntos
Alternativas aos Testes com Animais/métodos , Bioensaio/métodos , Dano ao DNA , Laboratórios/normas , Testes para Micronúcleos/métodos , Mutagênicos/efeitos adversos , Pele/patologia , Reações Falso-Positivas , Humanos , Técnicas In Vitro , Pele/efeitos dos fármacos , Pele/metabolismo
4.
J Immunol ; 205(5): 1248-1255, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32699157

RESUMO

T follicular helper (Tfh) cells play a very important role in mounting a humoral response. Studies conducted in mouse models have revealed with good kinetic and spatial resolution the dynamics of these cells in germinal centers (GC) and their cross-talk with B cells upon an immune response. However, whether a similar migratory behavior is performed by human Tfh cells is unclear, as technology to track them in situ has been lacking. In this study, we combined traditional immunohistochemistry and real-time fluorescent imaging approaches on fresh human adenoid slices to provide static and dynamic information on Tfh cells. Our data indicate that GC light zones are composed of two distinct areas in terms of Tfh cell distribution and migration. In the outer GC light zones, Tfh cells migrate actively and with a high ability to form dynamic clusters showing intense and rapid reorganization. In these outer regions, Tfh cells demonstrate multiple interactions between each other. Conversely, in central regions of GC light zones, Tfh cells are much more static, forming long-lasting conjugates. These findings reveal for the first time, to our knowledge, the dynamic behavior whereby Tfh cells migrate in human GC and highlight the heterogeneity of GC for Tfh cell motility.


Assuntos
Centro Germinativo/imunologia , Células T Auxiliares Foliculares/imunologia , Tonsila Faríngea/imunologia , Linfócitos B/imunologia , Movimento Celular/imunologia , Humanos
5.
Artigo em Inglês | MEDLINE | ID: mdl-32247552

RESUMO

Use of three-dimensional (3D) tissue equivalents in toxicology has been increasing over the last decade as novel preclinical test systems and as alternatives to animal testing. In the area of genetic toxicology, progress has been made with establishing robust protocols for skin, airway (lung) and liver tissue equivalents. In light of these advancements, a "Use of 3D Tissues in Genotoxicity Testing" working group (WG) met at the 7th IWGT meeting in Tokyo in November 2017 to discuss progress with these models and how they may fit into a genotoxicity testing strategy. The workshop demonstrated that skin models have reached an advanced state of validation following over 10 years of development, while liver and airway model-based genotoxicity assays show promise but are at an early stage of development. Further effort in liver and airway model-based assays is needed to address the lack of coverage of the three main endpoints of genotoxicity (mutagenicity, clastogenicity and aneugenicity), and information on metabolic competence. The IWGT WG believes that the 3D skin comet and micronucleus assays are now sufficiently validated to undergo an independent peer review of the validation study, followed by development of individual OECD Test Guidelines.


Assuntos
Dano ao DNA/efeitos dos fármacos , Metagenômica/tendências , Testes de Mutagenicidade/métodos , Mutagênicos/toxicidade , Dano ao DNA/genética , Humanos , Fígado/efeitos dos fármacos , Fígado/patologia , Testes para Micronúcleos
6.
PLoS One ; 14(10): e0224156, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31648255

RESUMO

AIMS: The examination of histological sections is still the gold standard in diagnostic pathology. Important histopathological diagnostic criteria are nuclear shapes and chromatin distribution as well as nucleus-cytoplasm relation and immunohistochemical properties of surface and intracellular proteins. The aim of this investigation was to evaluate the benefits and drawbacks of three-dimensional imaging of CD30+ cells in classical Hodgkin Lymphoma (cHL) in comparison to CD30+ lymphoid cells in reactive lymphoid tissues. MATERIALS AND RESULTS: Using immunoflourescence confocal microscopy and computer-based analysis, we compared CD30+ neoplastic cells in Nodular Sclerosis cHL (NScCHL), Mixed Cellularity cHL (MCcHL), with reactive CD30+ cells in Adenoids (AD) and Lymphadenitis (LAD). We confirmed that the percentage of CD30+ cell volume can be calculated. The amount in lymphadenitis was approx. 1.5%, in adenoids around 2%, in MCcHL up to 4,5% whereas the values for NScHL rose to more than 8% of the total cell cytoplasm. In addition, CD30+ tumour cells (HRS-cells) in cHL had larger volumes, and more protrusions compared to CD30+ reactive cells. Furthermore, the formation of large cell networks turned out to be a typical characteristic of NScHL. CONCLUSION: In contrast to 2D histology, 3D laser scanning offers a visualisation of complete cells, their network interaction and spatial distribution in the tissue. The possibility to differentiate cells in regards to volume, surface, shape, and cluster formation enables a new view on further diagnostic and biological questions. 3D includes an increased amount of information as a basis of bioinformatical calculations.


Assuntos
Doença de Hodgkin/patologia , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Antígeno Ki-1/metabolismo , Tecido Linfoide/patologia , Microscopia Confocal/métodos , Doença de Hodgkin/metabolismo , Humanos , Tecido Linfoide/metabolismo
7.
Methods Mol Biol ; 2031: 195-208, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31473961

RESUMO

The classical in vitro genotoxicity test battery is known to be sensitive for indicating genotoxicity. However, a high rate of "misleading" positives was reported when three assays were combined as required by several legislations. Despite the recent optimizations of the standard in vitro tests, two gaps could merely be addressed with assays based on monolayer cell cultures, that is, the route of exposure and a relevant intrinsic metabolic capacity to transform chemicals into reactive metabolites. Following these considerations, fertilized chicken eggs have been introduced into genotoxicity testing and were combined with a classical readout parameter, i.e., the analysis of micronucleus frequency in erythrocytes, to develop the hen's egg test for micronucleus induction, the HET-MN. As a major advantage the test mirrors the systemic availability of compounds after oral exposure reflecting certain steps of ADME without being considered as an animal experiment. After a successful validation exercise the detailed protocol is given here.


Assuntos
Dano ao DNA/efeitos dos fármacos , Ovos , Testes para Micronúcleos/métodos , Animais , Galinhas , Ovos/análise , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Mutagênicos/toxicidade , Coloração e Rotulagem/métodos
8.
Artigo em Inglês | MEDLINE | ID: mdl-29502735

RESUMO

Recently revised OECD Testing Guidelines highlight the importance of considering the first site-of-contact when investigating the genotoxic hazard. Thus far, only in vivo approaches are available to address the dermal route of exposure. The 3D Skin Comet and Reconstructed Skin Micronucleus (RSMN) assays intend to close this gap in the in vitro genotoxicity toolbox by investigating DNA damage after topical application. This represents the most relevant route of exposure for a variety of compounds found in household products, cosmetics, and industrial chemicals. The comet assay methodology is able to detect both chromosomal damage and DNA lesions that may give rise to gene mutations, thereby complementing the RSMN which detects only chromosomal damage. Here, the comet assay was adapted to two reconstructed full thickness human skin models: the EpiDerm™- and Phenion® Full-Thickness Skin Models. First, tissue-specific protocols for the isolation of single cells and the general comet assay were transferred to European and US-American laboratories. After establishment of the assay, the protocol was then further optimized with appropriate cytotoxicity measurements and the use of aphidicolin, a DNA repair inhibitor, to improve the assay's sensitivity. In the first phase of an ongoing validation study eight chemicals were tested in three laboratories each using the Phenion® Full-Thickness Skin Model, informing several validation modules. Ultimately, the 3D Skin Comet assay demonstrated a high predictive capacity and good intra- and inter-laboratory reproducibility with four laboratories reaching a 100% predictivity and the fifth yielding 70%. The data are intended to demonstrate the use of the 3D Skin Comet assay as a new in vitro tool for following up on positive findings from the standard in vitro genotoxicity test battery for dermally applied chemicals, ultimately helping to drive the regulatory acceptance of the assay. To expand the database, the validation will continue by testing an additional 22 chemicals.


Assuntos
Ensaio Cometa/normas , Reagentes de Ligações Cruzadas/efeitos adversos , Dano ao DNA , Testes para Micronúcleos/métodos , Testes de Mutagenicidade/métodos , Mutagênicos/efeitos adversos , Pele/patologia , Cosméticos , Humanos , Reprodutibilidade dos Testes , Pele/efeitos dos fármacos
9.
Regul Toxicol Pharmacol ; 73(1): 210-26, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26188116

RESUMO

The European Partnership for Alternative Approaches to Animal Testing (EPAA) convened a workshop Knowledge sharing to facilitate regulatory decision-making. Fifty invited participants from the European Commission, national and European agencies and bodies, different industry sectors (chemicals, cosmetics, fragrances, pharmaceuticals, vaccines), and animal protection organizations attended the workshop. Four case studies exemplarily revealed which procedures are in place to obtain regulatory acceptance of new test methods in different sectors. Breakout groups discussed the status quo identifying the following facilitators for regulatory acceptance of alternatives to animal testing: Networking and communication (including cross-sector collaboration, international cooperation and harmonization); involvement of regulatory agencies from the initial stages of test method development on; certainty on prerequisites for test method acceptance including the establishment of specific criteria for regulatory acceptance. Data sharing and intellectual property issues affect many aspects of test method development, validation and regulatory acceptance. In principle, all activities should address replacement, reduction and refinement methods (albeit animal testing is generally prohibited in the cosmetics sector). Provision of financial resources and education support all activities aiming at facilitating the acceptance and use of alternatives to animal testing. Overall, workshop participants recommended building confidence in new methodologies by applying and gaining experience with them.


Assuntos
Alternativas aos Testes com Animais/métodos , Testes de Toxicidade/métodos , Animais , Cosméticos/química , Tomada de Decisões , Indústrias/métodos , Cooperação Internacional
10.
Toxicol In Vitro ; 29(1): 259-70, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25448812

RESUMO

The need for non-animal data to assess skin sensitisation properties of substances, especially cosmetics ingredients, has spawned the development of many in vitro methods. As it is widely believed that no single method can provide a solution, the Cosmetics Europe Skin Tolerance Task Force has defined a three-phase framework for the development of a non-animal testing strategy for skin sensitization potency prediction. The results of the first phase ­ systematic evaluation of 16 test methods ­ are presented here. This evaluation involved generation of data on a common set of ten substances in all methods and systematic collation of information including the level of standardisation, existing test data,potential for throughput, transferability and accessibility in cooperation with the test method developers.A workshop was held with the test method developers to review the outcome of this evaluation and to discuss the results. The evaluation informed the prioritisation of test methods for the next phase of the non-animal testing strategy development framework. Ultimately, the testing strategy ­ combined with bioavailability and skin metabolism data and exposure consideration ­ is envisaged to allow establishment of a data integration approach for skin sensitisation safety assessment of cosmetic ingredients.


Assuntos
Alternativas aos Testes com Animais/métodos , Dermatite Alérgica de Contato/etiologia , Linhagem Celular , Cosméticos , Epiderme/efeitos dos fármacos , Humanos , Técnicas In Vitro , Interleucina-18/análise , Queratinócitos/efeitos dos fármacos , Medição de Risco , Pele/efeitos dos fármacos , Células U937/efeitos dos fármacos
11.
ALTEX ; 31(4): 441-77, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25027500

RESUMO

Integrated approaches using different in vitro methods in combination with bioinformatics can (i) increase the success rate and speed of drug development; (ii) improve the accuracy of toxicological risk assessment; and (iii) increase our understanding of disease. Three-dimensional (3D) cell culture models are important building blocks of this strategy which has emerged during the last years. The majority of these models are organotypic, i.e., they aim to reproduce major functions of an organ or organ system. This implies in many cases that more than one cell type forms the 3D structure, and often matrix elements play an important role. This review summarizes the state of the art concerning commonalities of the different models. For instance, the theory of mass transport/metabolite exchange in 3D systems and the special analytical requirements for test endpoints in organotypic cultures are discussed in detail. In the next part, 3D model systems for selected organs--liver, lung, skin, brain--are presented and characterized in dedicated chapters. Also, 3D approaches to the modeling of tumors are presented and discussed. All chapters give a historical background, illustrate the large variety of approaches, and highlight up- and downsides as well as specific requirements. Moreover, they refer to the application in disease modeling, drug discovery and safety assessment. Finally, consensus recommendations indicate a roadmap for the successful implementation of 3D models in routine screening. It is expected that the use of such models will accelerate progress by reducing error rates and wrong predictions from compound testing.


Assuntos
Alternativas aos Testes com Animais/métodos , Técnicas de Cultura de Células/instrumentação , Técnicas de Cultura de Células/métodos , Dispositivos Lab-On-A-Chip , Animais , Bioensaio/instrumentação , Bioensaio/métodos , Modelos Biológicos
12.
Skin Pharmacol Physiol ; 27(5): 263-75, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24943921

RESUMO

The xenobiotic metabolism of 4 in vitro human skin test systems (2D and 3D) was compared with that of the native human skin samples from which the skin test systems had been produced. In total 3 skin samples were investigated, each from a different donor to exclude variability due to gender, donor or tissue supplier. In addition, the skin cultures were compared with a surrogate of the liver. Basal and induced phase I and phase II enzymes were analyzed regarding gene/protein expression as well as enzyme activity. The distinctions between the different test systems and the two dermal compartments (epidermis and dermis) were more noticeable than any donor variability. The 3D models of skin and liver mirrored the in vivo situation more realistically than did the monolayer cultures. Phase I metabolism was more pronounced in the hepatic model, whereas phase II metabolism was more prominent in the reconstructed skin. These results show that reconstructed skin models are a valuable tool for organ-specific safety assessment with regard to xenobiotic metabolism.


Assuntos
Fibroblastos/metabolismo , Queratinócitos/metabolismo , Fígado/metabolismo , Pele/metabolismo , Xenobióticos/metabolismo , Células Cultivadas , Perfilação da Expressão Gênica , Células Hep G2 , Humanos , Técnicas In Vitro , Oxigenases/genética , Transferases/genética
13.
Dermatitis ; 25(1): 11-21, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24407057

RESUMO

Although adoption of skin sensitization in vivo assays for hazard identification is likely to be successful in the next few years, this does not replace their use in potency prediction. Notably, measurement of potency of skin sensitizers in the local lymph node assay has been important. However, this local lymph node assay potency measure has not been formally assessed against a range of substances of known human sensitizing potential, because the latter is lacking. Accordingly, criteria for human data have been established that characterize 6 categories of human sensitizing potency, with 1 the most potent and 5 the least potent; category 6 represents true nonsensitizers. The literature has been searched, and 131 chemicals assigned into these categories according to their intrinsic potency judged only by the available human information. The criteria and data set generated provide a basis for examination of the capacity of nonanimal approaches for the determination of human sensitization potency.


Assuntos
Alérgenos/classificação , Alérgenos/toxicidade , Dermatite Alérgica de Contato/etiologia , Relação Dose-Resposta Imunológica , Humanos , Ensaio Local de Linfonodo , Nível de Efeito Adverso não Observado , Testes do Emplastro
14.
Mutagenesis ; 28(6): 709-20, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24150594

RESUMO

Reconstructed 3D human epidermal skin models are being used increasingly for safety testing of chemicals. Based on EpiDerm™ tissues, an assay was developed in which the tissues were topically exposed to test chemicals for 3h followed by cell isolation and assessment of DNA damage using the comet assay. Inter-laboratory reproducibility of the 3D skin comet assay was initially demonstrated using two model genotoxic carcinogens, methyl methane sulfonate (MMS) and 4-nitroquinoline-n-oxide, and the results showed good concordance among three different laboratories and with in vivo data. In Phase 2 of the project, intra- and inter-laboratory reproducibility was investigated with five coded compounds with different genotoxicity liability tested at three different laboratories. For the genotoxic carcinogens MMS and N-ethyl-N-nitrosourea, all laboratories reported a dose-related and statistically significant increase (P < 0.05) in DNA damage in every experiment. For the genotoxic carcinogen, 2,4-diaminotoluene, the overall result from all laboratories showed a smaller, but significant genotoxic response (P < 0.05). For cyclohexanone (CHN) (non-genotoxic in vitro and in vivo, and non-carcinogenic), an increase compared to the solvent control acetone was observed only in one laboratory. However, the response was not dose related and CHN was judged negative overall, as was p-nitrophenol (p-NP) (genotoxic in vitro but not in vivo and non-carcinogenic), which was the only compound showing clear cytotoxic effects. For p-NP, significant DNA damage generally occurred only at doses that were substantially cytotoxic (>30% cell loss), and the overall response was comparable in all laboratories despite some differences in doses tested. The results of the collaborative study for the coded compounds were generally reproducible among the laboratories involved and intra-laboratory reproducibility was also good. These data indicate that the comet assay in EpiDerm™ skin models is a promising model for the safety assessment of compounds with a dermal route of exposure.


Assuntos
Ensaio Cometa/normas , Epiderme/efeitos dos fármacos , 4-Nitroquinolina-1-Óxido/toxicidade , Cicloexanonas/toxicidade , Dano ao DNA , Avaliação Pré-Clínica de Medicamentos/normas , Etilnitrosoureia/toxicidade , Humanos , Ensaio de Proficiência Laboratorial , Metanossulfonato de Metila/toxicidade , Modelos Biológicos , Mutagênicos/toxicidade , Nitrofenóis/toxicidade , Fenilenodiaminas/toxicidade , Reprodutibilidade dos Testes , Técnicas de Cultura de Tecidos
15.
Mutat Res ; 757(1): 68-78, 2013 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-23892231

RESUMO

The HET-MN assay (hen's egg test for micronucleus induction) is different from other in vitro genotoxicity assays in that it includes toxicologically important features such as absorption, distribution, metabolic activation, and excretion of the test compound. As a promising follow-up to complement existing in vitro test batteries for genotoxicity, the HET-MN is currently undergoing a formal validation. To optimize the validation, the present study describes a critical analysis of previously obtained HET-MN data to check the experimental design and to identify the most appropriate statistical procedure to evaluate treatment effects. Six statistical challenges (I-VI) of general relevance were identified, and remedies were provided which can be transferred to similarly designed test methods: a Williams-type trend test is proposed for overdispersed counts (II) by means of a square-root transformation which is robust for small sample sizes (I), variance heterogeneity (III), and possible downturn effects at high doses (IV). Due to near-to-zero or even zero-count data occurring in the negative control (V), a conditional comparison of the treatment groups against the mean of the historical controls (VI) instead of the concurrent control was proposed, which is in accordance with US-FDA recommendations. For the modified Williams-type tests, the power can be estimated depending on the magnitude and shape of the trend, the number of dose groups, and the magnitude of the MN counts in the negative control. The experimental design used previously (i.e. six eggs per dose group, scoring of 1000 cells per egg) was confirmed. The proposed approaches are easily available in the statistical computing environment R, and the corresponding R-codes are provided.


Assuntos
Interpretação Estatística de Dados , Relação Dose-Resposta a Droga , Testes para Micronúcleos/métodos , Animais , Galinhas , Humanos , Estados Unidos , United States Food and Drug Administration
16.
Toxicol Sci ; 133(2): 209-17, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23539547

RESUMO

Several human skin models employing primary cells and immortalized cell lines used as monocultures or combined to produce reconstituted 3D skin constructs have been developed. Furthermore, these models have been included in European genotoxicity and sensitization/irritation assay validation projects. In order to help interpret data, Cosmetics Europe (formerly COLIPA) facilitated research projects that measured a variety of defined phase I and II enzyme activities and created a complete proteomic profile of xenobiotic metabolizing enzymes (XMEs) in native human skin and compared them with data obtained from a number of in vitro models of human skin. Here, we have summarized our findings on the current knowledge of the metabolic capacity of native human skin and in vitro models and made an overall assessment of the metabolic capacity from gene expression, proteomic expression, and substrate metabolism data. The known low expression and function of phase I enzymes in native whole skin were reflected in the in vitro models. Some XMEs in whole skin were not detected in in vitro models and vice versa, and some major hepatic XMEs such as cytochrome P450-monooxygenases were absent or measured only at very low levels in the skin. Conversely, despite varying mRNA and protein levels of phase II enzymes, functional activity of glutathione S-transferases, N-acetyltransferase 1, and UDP-glucuronosyltransferases were all readily measurable in whole skin and in vitro skin models at activity levels similar to those measured in the liver. These projects have enabled a better understanding of the contribution of XMEs to toxicity endpoints.


Assuntos
Modelos Biológicos , Pele/efeitos dos fármacos , Testes de Toxicidade/métodos , Xenobióticos/toxicidade , Alternativas aos Testes com Animais , Linhagem Celular , Sistema Enzimático do Citocromo P-450/metabolismo , Expressão Gênica , Humanos , Proteômica , Reprodutibilidade dos Testes , Medição de Risco/ética , Medição de Risco/métodos , Pele/enzimologia , Xenobióticos/metabolismo
17.
Mutat Res ; 747(1): 118-134, 2012 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-22580102

RESUMO

The hen's egg test for analysis of micronucleus formation (HET-MN) was developed several years ago to provide an alternative test system to the in vivo micronucleus test. In order to assess its applicability and robustness, a study was carried out at the University of Osnabrueck (lab A) and at the laboratories of Henkel AG & Co. KGaA (lab B). Following transfer of the method to lab B, a range of test substances that had been pre-tested at lab A, were tested at Henkel: the genotoxins cyclophosphamide, dimethylbenz(a)anthracene, methotrexate, acrylamide, azorubin, N-nitroso-dimethylamine and the non-genotoxins, orange G and isopropyl myristate. In a second phase, additional compounds with known in vivo properties were examined in both labs: the non-genotoxin, ampicillin, the "irrelevant" positives, isophorone and 2,4-dichlorophenol ("irrelevant" means positive in standard in vitro tests, but negative in vivo), the clastogen p-chloroaniline, and the aneugens carbendazim and vinorelbine. All substances were correctly predicted in both labs with respect to their in vivo genotoxic properties, indicating that the HET-MN may have an improved predictivity compared with current standard in vitro test systems. The results support the promising role of the HET-MN assay as a supplement to existing test batteries.


Assuntos
Galinhas , Ovos , Testes para Micronúcleos/métodos , Mutagênicos/toxicidade , Reprodutibilidade dos Testes , Animais
18.
Toxicol In Vitro ; 25(7): 1435-47, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21550395

RESUMO

Classification and labeling of products with extreme pH values (≤ 2 or ≥ 11.5) is addressed in chemicals legislation. Following determination of pH and alkaline/acid reserve, additional in vitro tests are needed, especially to substantiate results less than corrosive. However, only limited experience with the practical application of in vitro methods to determine appropriate classifications for pH extreme products is available so far. Expert judgment and weight of evidence are given major roles under the globally harmonized system of classification and labeling of chemicals (GHS) and should be performed on a sound data basis. We have used a tiered testing strategy to assess 20 industrial products (cleaning and metal pretreatment) regarding their corrosive and irritating properties towards human skin models in vitro in the EpiDerm skin corrosion and/or skin irritation test. Nine dilutions of individual compounds were additionally tested. Non-corrosive samples were tested in the Hen's egg test chorioallantoic membrane (HET-CAM). We demonstrate how data is combined in a weight of evidence expert judgment, and give examples of classification decisions. To our knowledge this is the first comprehensive analysis of industrial products with extreme pH values to determine irritating and corrosive properties by making use of in vitro methods in a weight of evidence approach.


Assuntos
Olho/efeitos dos fármacos , Substâncias Perigosas/toxicidade , Irritantes/toxicidade , Queratinócitos/efeitos dos fármacos , Pele/efeitos dos fármacos , Testes de Toxicidade/métodos , Alternativas aos Testes com Animais , Animais , Galinhas , Membrana Corioalantoide/efeitos dos fármacos , Substâncias Perigosas/análise , Substâncias Perigosas/classificação , Humanos , Concentração de Íons de Hidrogênio , Irritantes/química , Irritantes/classificação , Modelos Biológicos , Óvulo , Rotulagem de Produtos/normas
19.
Toxicol In Vitro ; 25(6): 1209-14, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21435388

RESUMO

With the perspective to use human reconstructed skin models for genotoxicity testing which require metabolic activation of xenobiotics, this study aimed to characterize activities of biotransforming enzymes within two human reconstructed skin models, the epidermis model EpiDerm™ (MatTek) and the Phenion® Full-Thickness skin model Phenion®FT (Henkel). According to existing gene expression profiles, Cytochrome P450 (CYP) enzymes, Flavin-dependent monooxygenases (FMO), N-acetyltransferases (NAT) and UDP-glucuronyltransferases (UDP-GT) were investigated in S9 or microsomal fractions. CYP-catalyzed monooxygenation was assayed using 7-ethoxyresorufin, pentoxyresorufin and benzyloxyresorufin as substrates. FMO activity was tested using benzydamine. Conjugating activities of NAT and UDP-GT were determined by acetylation of p-aminobenzoic acid or glucuronation of 4-methylumbelliferone, respectively. Although CYPs were detected by expression profiling, no CYP activity was detected in either the epidermal nor the full-thickness reconstructed skin model while expression and activity of FMO, UDP-GT and NAT were demonstrated in both.


Assuntos
Epiderme/enzimologia , Pele/enzimologia , Xenobióticos/metabolismo , Acetiltransferases/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Epiderme/metabolismo , Perfilação da Expressão Gênica , Glucuronosiltransferase/metabolismo , Humanos , Testes de Mutagenicidade/métodos , Oxigenases/metabolismo , Pele/metabolismo
20.
Regul Toxicol Pharmacol ; 59(3): 471-92, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21310206

RESUMO

Extensive research has been conducted over the past decades to develop alternatives to the rabbit eye irritation test (Draize test) used in a regulatory context to assess eye irritation potentials. Although no single in vitro test has emerged as being completely acceptable for full replacement, various tests are considered to be suitable and are regularly used to assess certain aspects. Amongst these, the Hen's Egg Test Chorioallantoic Membrane (HET-CAM) has gained regulatory acceptance in various countries to classify severe eye irritants. In this retrospective study, historical eye irritation data (in vivo and in vitro) from 137 samples (approx. 75% non-irritants; 25% (severe) irritants) tested both in the HET-CAM and Draize eye test was compared with regard to the predicted eye irritation classes under the GHS and the traditional EU classification system (DSD).The overall concordance was in the range of 80-90%. A high specificity (96-98%, depending on the classification system and the chosen discrimination) but rather low sensitivity (48-65%) was observed. The study indicates that HET-CAM results are useful as part of weight-of-evidence assessments or in tiered approaches to assess eye irritation potentials rather than as stand-alone classification method.


Assuntos
Membrana Corioalantoide/efeitos dos fármacos , Bases de Dados Factuais/normas , Irritantes/classificação , Irritantes/toxicidade , Alternativas aos Testes com Animais/métodos , Alternativas aos Testes com Animais/normas , Animais , Embrião de Galinha , Membrana Corioalantoide/patologia , Interpretação Estatística de Dados , Irritantes/administração & dosagem , Coelhos , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...