Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Polym Mater ; 5(7): 5260-5269, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37469882

RESUMO

A complex crystallization behavior was observed for the alternating copolymer DMDS-alt-DVE synthesized via thiol-ene step-growth polymerization. Understanding the underlying complex crystallization processes of such innovative polythioethers is critical for their application, for example, in polymer coating technologies. These alternating copolymers have polymorphic traits, resulting in different phases that may display distinct crystalline structures. The copolymer DMDS-alt-DVE was studied in an earlier work, where only two crystalline phases were reported: a low melting, L - Tm, and high melting, H - Tm phase. Remarkably, the H - Tm form was only achieved by the previous formation and melting of the L - Tm form. We applied calorimetric techniques encompassing seven orders of magnitude in scanning rates to further explore this complex polymorphic behavior. Most importantly, by rapidly quenching the sample to temperatures well below room temperature, we detected an additional polymorphic form (characterized by a very low melting phase, denoted VL - Tm). Moreover, through tailored thermal protocols, we successfully produced samples containing only one, two, or all three polymorphs, providing insights into their interrelationships. Understanding polymorphism, crystallization, and the resulting morphological differences can have significant implications and potential impact on mechanical resistance and barrier properties.

2.
Langmuir ; 39(7): 2710-2718, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36757479

RESUMO

We investigated changes in the hydration state of poly(ethylene glycol) (PEG) through morphological changes in Langmuir monolayers of a PEG-poly(l-lactide) (PlLA) (PEG-b-PlLA) diblock copolymer. When the PEG blocks were hydrated, we observed a remarkable morphology of bundles of ring-like filaments, arranged concentrically, yielding densely packed disk-like objects with a hollow center. We attribute the uniform curvature of these filaments to a strong mismatch between the molecular volumes occupied by PlLA blocks and hydrated PEG blocks. Under the constraint that each hydrated PEG block is attached to a hydrophobic PlLA block anchored to the air-water interface, this mismatch of molecular volumes caused strong repulsion within the PEG layer, in particular when the PlLA blocks packed tightly. Induced by a transition in the ordering of the PlLA blocks, the PEG blocks lost their hydration shell and packed into a dense polymer brush, accompanied by a reduction of the pressure within the PEG layer. During this packing process, the curvature of the filaments was eliminated and the ring-like filaments fractured into small linear pieces. Upon compression, the linear pieces coalesced and formed long filaments aligned in parallel. Importantly, upon expansion of the Langmuir film, these changes in morphology were reversible, and the PEG blocks could be rehydrated and bundles of concentrically arranged ring-like filaments were reformed. We conclude that the change in curvature of the filaments provides a means for distinguishing between the hydrated and dehydrated states of PEG.

3.
ACS Macro Lett ; 11(6): 760-765, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35612497

RESUMO

Molecular force transduction in tough and glassy poly(meta,meta,para-phenylene) (PmmpP) was investigated as a function of Mn using covalently incorporated mechanochromic donor-acceptor torsional springs based on an ortho-substituted diphenyldiketopyrrolopyrrole (oDPP). Blending oDPP-PmmpP probe chains with long PmmpP matrix chains allowed us to investigate molar-mass-dependent mechanochromic properties for a series of specimens having mechanically identical properties. In the strain-hardening regime, the mechanochromic response (Δλmax,em) was found to be a linear function of the acting stress and fully reversible, making oDPP-PmmpP a real-time and quantitative stress sensor. For entangled and nonentangled probe chains, distinctly different values of Δλmax,em were observed, yielding a critical molar mass of Mc ≈ 11 kg mol-1 for PmmpP. Once physical cross-linking of oDPP in the network of PmmpP was ensured, Δλmax,em was found to be independent of Mn. The resulting value of Mc is in very good agreement with results from rheology.


Assuntos
Polímeros , Peso Molecular , Reologia
4.
Eur Phys J E Soft Matter ; 45(5): 51, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35612618

RESUMO

We present results from isothermal and temperature-sweep creep experiments adapted to filaments which were derived from spin coated and subsequently crumpled thin polystyrene films. Due to the existence of residual stresses induced by preparation, the filaments showed significant shrinkage which we followed as a function of time at various temperatures. In addition, the influence of preparation conditions and subsequent annealing of supported thin polymer films on shrinkage and relaxation behavior was investigated. The temporal evolution of shrinkage revealed a sequence of relaxation regimes. We explored the temperature dependence of this relaxation and compared our observations with published results on drawn melt-spun fibers. This comparison revealed intriguing similarities between both systems prepared along different pathways. For instance, the magnitudes of shrinkage of melt-spun fibers and of filaments from crumpled spin coated polymer films are similar. Thus, our results suggest the existence of generic mechanisms of "forgetting", i.e., how non-equilibrated polymers lose their memory of past processing events.


Assuntos
Polímeros , Temperatura
5.
Macromol Rapid Commun ; 43(5): e2100740, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34890084

RESUMO

A photocatalytic thiol-ene aqueous emulsion polymerization under visible-light is described to prepare linear semicrystalline latexes using 2,2'-dimercaptodiethyl sulfide as dithiol and various dienes. The procedure involves low irradiance (3 mW cm-2 ), LED irradiation source, eosin-Y disodium as organocatalyst, low catalyst loading (<0.05% mol), and short reaction time scales (<1 h). The resulting latexes have molecular weights of about 10 kg mol-1 , average diameters of 100 nm, and a linear structure consisting only of thioether repeating units. Electron-transfer reaction from a thiol to the triplet excited state of the photocatalyst is suggested as the primary step of the mechanism (type I), whereas oxidation by singlet oxygen generated by energy transfer has a negligible effect (type II). Only polymers prepared with aliphatic dienes such as diallyl adipate or di(ethylene glycol) divinyl ether exhibit a high crystallization tendency as revealed by differential scanning calorimetry, polarized optical microscopy, and X-ray diffraction. Ordering and crystallization are driven by molecular packing of poly(thioether) chains combining structural regularity, compactness, and flexibility.


Assuntos
Compostos de Sulfidrila , Sulfetos , Emulsões , Polimerização , Polímeros/química , Compostos de Sulfidrila/química
6.
Sci Rep ; 11(1): 13149, 2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34162940

RESUMO

We studied the origin of breaking the symmetry for moving circular contact lines of dewetting polymer films suspended on a periodic array of pillars. There, dewetting force fields driving polymer flow were perturbed by elastic micro-pillars arranged in a regular square pattern. Elastic restoring forces of deformed pillars locally balance driving capillary forces and broke the circular symmetry of expanding dewetting holes. The observed envelope of the dewetting holes reflected the symmetry of the underlying pattern, even at sizes much larger than the characteristic period of the pillar array, demonstrating that periodic perturbations in a driving force field can establish a well-defined pattern of lower symmetry. For the presented system, we succeeded in squaring the circle.

7.
Polymers (Basel) ; 13(11)2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34064146

RESUMO

We examined the formation of self-seeded platelet-like crystals from polystyrene-block-polyethylene oxide (PS-b-PEO) diblock copolymers in toluene as a function of polymer concentration (c), crystallization temperature (TC), and self-seeding temperature (TSS). We showed that the number (N) of platelet-like crystals and their mean lateral size (L) can be controlled through a self-seeding procedure. As (homogeneous) nucleation was circumvented by the self-seeding procedure, N did not depend on TC. N increased linearly with c and decayed exponentially with TSS but was not affected significantly by the time the sample was kept at TSS. The solubility limit of PS-b-PEO in toluene (c*), which was derived from the linear extrapolation of Nc→ 0 and from the total deposited mass of the platelets per area (MCc→0), depended on TC. We have also demonstrated that at low N, stacks consisting of a (large) number (η) of uniquely oriented lamellae can be achieved. At a given TC, L was controlled by N and η as well as by ∆c=c-c∗. Thus, besides being able to predict size and number of platelet-like crystals, the self-seeding procedure also allowed control of the number of stacked lamellae in these crystals.

8.
J Phys Chem B ; 125(21): 5636-5644, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-34029467

RESUMO

We present measurements of absorbance and photoluminescence (PL) for films of poly(3-(2,5-dioctylphenyl)thiophene) (PDOPT) as a function of temperature (T) and time (t) of illumination. While having no detectable influence on absorbance of this conjugated polymer, our experiments clearly revealed that illumination of PDOPT caused a significant increase in the PL intensity (IPL(T,t)), that is, the emission probability of PDOPT. Without illumination, we always observed a decrease in IPL with time. An increase in IPL was only detectable when the sample was illuminated. Interestingly, while absorption and emission of photons occur on a time scale of nanoseconds, the here-reported changes in the emission probability were slow and occurred on a time scale of minutes to hours. The influence of illumination on changes in IPL(T,t) was qualitatively similar for slowly and rapidly crystallized PDOPT, that is, the degree of crystallinity was not decisive for the observation. The rate of the increase in IPL depended clearly on the power of the illumination light source. As a function of the illumination time, the change in IPL(T,t) was nonmonotonic and depended on sample temperature. We speculate that changes in polymer interactions caused by excited electronic states might have induced slow changes in polymer conformations.

9.
ACS Appl Mater Interfaces ; 13(20): 24218-24227, 2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-33988355

RESUMO

Changes in surface energy and electrical conductivity of polyimide (PI)-based nanocomposite films filled with carbon nanotubes (CNTs) induced by UV exposure are gaining considerable interest in microelectronic, aeronautical, and aerospace applications. However, the underlying mechanism of PI photochemistry and oxidation reactions induced by UV irradiation upon the surface in the presence of CNTs is still not clear. Here, we probed the interplay between CNTs and PIs under UV exposure in the surface properties of CNT/PI nanocomposite films. Changes in contact angles and surface electrical conductivity at the surface of CNT/PI nanocomposite films after UV exposure were measured. The unpaired electron intensity of free radicals generated by UV exposure was monitored by electron paramagnetic resonance. Our study indicates that the covalent interactions between CNTs and radicals generated by UV irradiation on the PI surfaces tailor the surface energy and surface conductivity through anchoring radicals on CNTs. Surprisingly, adding CNTs into PI films exposed to UV leads to antagonistic contributions of dispersion and polar components to the surface energy. The surface electrical conductivity of the CNT/PI nanocomposite films has been improved due to an enhanced hopping behavior with dense π-conjugated CNT sites. To explain the observed changes in surface energy and surface conductivity of CNT/PI nanocomposite films induced by UV exposure, a qualitative model was put forward describing the covalent interactions between UV-induced PI free radicals and CNTs, which govern the chemical nature of surface components. This study is helpful for characterizing and optimizing nanocomposite surface properties by tuning the covalent interactions between components at the nanoscale.

10.
J Chem Phys ; 153(14): 144202, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-33086831

RESUMO

Unambiguous information about spatiotemporal exciton dynamics in three-dimensional nanometer- to micrometer-sized organic structures is difficult to obtain experimentally. Exciton dynamics can be modified by annihilation processes, and different light propagation mechanisms can take place, such as active waveguiding and photon recycling. Since these various processes and mechanisms can lead to similar spectroscopic and microscopic signatures on comparable time scales, their discrimination is highly demanding. Here, we study individual organic single crystals grown from thiophene-based oligomers. We use time-resolved detection-beam scanning microscopy to excite a local singlet exciton population and monitor the subsequent broadening of the photoluminescence (PL) signal in space and on pico- to nanosecond time scales. Combined with Monte Carlo simulations, we were able to exclude photon recycling for our system, whereas leakage radiation upon active waveguiding leads to an apparent PL broadening of about 20% compared to the initial excitation profile. Exciton-exciton annihilation becomes important at high excitation fluence and apparently accelerates the exciton dynamics leading to apparently increased diffusion lengths. At low excitation fluences, the spatiotemporal PL broadening results from singlet exciton diffusion with diffusion lengths of up to 210 nm. Surprisingly, even in structurally highly ordered single crystals, the transport dynamics is subdiffusive and shows variations between different crystals, which we relate to varying degrees of static and dynamic electronic disorders.

11.
Langmuir ; 36(28): 8184-8192, 2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32569470

RESUMO

Focusing on the phase-coexistence region in Langmuir films of poly(l-lactide), we investigated changes in nonequilibrated morphologies and the corresponding features of the isotherms induced by different experimental pathways of lateral compression and expansion. In this coexistence region, the surface pressure Π was larger than the expected equilibrium value and was found to increase upon compression, i.e., exhibited a nonhorizontal plateau. As shown earlier by using microscopic techniques [Langmuir 2019, 35, 6129-6136], in this plateau region, well-ordered mesoscopic clusters coexisted with a surrounding matrix phase. We succeeded in reducing Π either by slowing down the rate of compression or through increasing the waiting time after stopping the movement of the barriers, which allowed for relaxations in the coexistence region. Intriguingly, the most significant pressure reduction was observed when recompressing a film that had already been compressed and expanded, if the recompression was started from an area value smaller than the one anticipated for the onset of the coexistence region. This observation suggests a "self-seeding" behavior, i.e., pre-existing nuclei allowed to circumvent the nucleation step. The decrease in Π was accompanied by a transformation of the initially formed metastable mesoscopic clusters into a thermodynamically favored filamentary morphology. Our results demonstrate that it is practically impossible to obtain fully equilibrated coexisting phases in a Langmuir polymer film, neither under conditions of extremely slow continuous compression nor for long waiting times at a constant area in the coexistence region which allow for reorganization.

12.
J Chem Phys ; 152(15): 150901, 2020 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-32321272

RESUMO

Properties of one and the same polymer can vary greatly with the history of a sample, reflecting its memory of past events. I propose that this remarkable changeability of polymer properties can be related to the immense variability of non-equilibrium conformational states, providing polymers with capacities for responding and adapting to changes in environmental conditions and to external stimuli. By decoding the relations between properties and meta-stable conformational states, we may be able to accomplish polymer products with selectable unique properties. In support of this claim, I first present a few typical examples focusing on changes induced by varying drying, freezing, or crystallization procedures, relevant in many industrial processing strategies for polymeric systems. In these examples, deviations from equilibrium conformations are controlled by a preparation parameter and the annealing/aging time and temperature. Subsequently, I briefly discuss the possibilities for a quantitative description of chain conformations deviating from equilibrium, which allow establishing a link between changes on a molecular level and their macroscopic behavior. A comprehensive and systematic investigation of out-of-equilibrium polymer properties will widen the scope of polymer science and enlarge the range of applications of polymers based on their responsiveness and adaptability derived from their memorizing capacities.

13.
Langmuir ; 35(18): 6129-6136, 2019 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-30998851

RESUMO

We studied morphological changes in a quasi-two-dimensional Langmuir film of low molar mass poly(l-lactide) upon increasing the surface density, starting from randomly distributed molecules to a homogeneous monolayer of closely packed molecules, followed by nucleation and growth of mesoscopic, three-dimensional clusters from an overcompressed monolayer. The corresponding nucleation density of mesoscopic clusters within the monolayer can be tailored through variation of the rate of compression. For a given surface density and temperature, the nucleation probability was found to increase linearly with the rate of compression, allowing to adjust the density of mesoscopic clusters over nearly 2 orders of magnitude.

14.
Soft Matter ; 15(14): 2981-2989, 2019 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-30912567

RESUMO

A wide range of possible applications in sensors and optoelectronic devices have focused considerable attention on porous membranes made of semi-conducting polymers. In this study, porous films of poly(3-hexylthiophene) (P3HT) were conveniently constructed through spin-coating of solutions of a blend of P3HT and polyethylene glycol (PEG). Pores were formed by phase separation driven simultaneously by incompatibility and crystallization. The influence of the polymer concentration (c), molecular weight (Mn) and spin-coating temperature (Tsp) on the pore size and structure was investigated. With increasing c from 0.5 to 5.0 wt%, the pore diameter (d) varied from ≈1.3 µm to ≈38 µm. Similarly, we observed a substantial increase of d with increasing Mn of PEG, while changing Mn of P3HT did not affect d. Micron- and nano-scale pores coexisted in porous P3HT films. While incompatibility of P3HT and PEG caused the formation of nano-pores, micron-scale pores resulted from crystallization in the PEG-rich domains by forcing PEG molecules to diffuse from the surrounding PEG-P3HT blend region to the crystal growth front.

15.
ACS Macro Lett ; 8(6): 646-650, 2019 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-35619518

RESUMO

We probed the relaxation of preparation-induced residual stresses in nonequilibrated polymer films through dewetting experiments. While we observed fast relaxations at temperatures close to or below the glass transition, at elevated temperatures these relaxation times were orders of magnitude longer than the reptation time. Intriguingly, applying appropriate scaling of preparation conditions allowed us to present all relaxation times, including published data, from various complementary experiments on a single master curve exhibiting an Arrhenius-type behavior. The corresponding activation energy (75 ± 10 kJ/mol) is similar to values obtained for the relaxation of segments in polystyrene. The observed long relaxation times suggest that residual stresses, a consequence of nonequilibrium conformations inherited from preparation, relax via concerted rearrangements of many segments.

16.
Phys Rev E ; 97(3-1): 032507, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29776131

RESUMO

Using dewetting as a characterization tool, we demonstrate that physical properties of thin polymer films can be regulated and tuned by employing variable processing conditions. For different molecular weights, the variable behavior of polystyrene films of identical thickness, prepared along systematically altered pathways, became predictable through a single parameter P, defined as the ratio of time required over time available for the equilibration of polymers. In particular, preparation-induced residual stresses, the corresponding relaxation times as well as the rupture probability of such films (of identical thickness) varied by orders of magnitude following scaling relations with P. Our experimental findings suggest that we can predictably enhance properties and hence maximize the performance of thin polymer films via appropriately chosen processing conditions.

17.
ACS Omega ; 3(6): 6728-6736, 2018 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-31458845

RESUMO

We employ energy-momentum spectroscopy on isolated organic single crystals with micrometer-sized dimensions. The single crystals are grown from a thiophene-based oligomer and are excellent low-loss active waveguides that support multiple guided modes. Excitation of the crystals with a diffraction-limited laser spot results in emission into guided modes as well as into quasi-discrete radiation modes. These radiation modes are mapped in energy-momentum space and give rise to dispersive interference patterns. On the basis of the known geometry of the crystals, especially the height, the characteristics of the interference maxima allow one to determine the energy dependence of two components of the anisotropic complex refractive index. Moreover, the method is suited to identify the orientation of molecules within (and around) a crystalline structure.

18.
Langmuir ; 33(42): 11399-11405, 2017 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-28899091

RESUMO

The emergence of polymer-free water surface in a Langmuir polymer film at conditions where a homogeneous coverage has been expected previously is explained on the basis of the surface tensions of polymer and water, γpv and γwv, respectively, as well as the interfacial tension between the two materials, γpw. The polymer molecules considered are 22-residue poly(γ-benzyl-l-glutamate) (PBLG) peptides in α-helical conformation. Values for γpv and γpw derived from MD simulations are consistent with values inferred from experiments considering the emergence of polymer-free surface area for ultrathin films studied using the surface forces apparatus in earlier work. Based on these surface properties, the behavior of individual PBLG peptides at the air-water interface, the dimerization of PBLG peptides, the equilibrium height and width of fibers with given cross section, and the lateral fusion of fibers are described. We show that a prerequisite for the emergence of multilayer structures, which appear locally in domains of sizes of tens to hundreds of micrometers in the considered Langmuir polymer film, is that the condition γpv + γpw - γwv > 0 holds true.

19.
Phys Chem Chem Phys ; 19(24): 15980-15987, 2017 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-28594024

RESUMO

Active optical waveguides based on functional small organic molecules in micro/nano regime have attracted great interest for their potential applications in high speed miniaturized photonic integrations. Here, we report on the active waveguiding properties of millimeter sized single crystals of a newly synthesized thiophene-based oligomer. These large crystals exhibit low optical loss compared to other organic nanostructures, and optical losses depend on the emission energy. Moreover, we find that the coupling of photoluminescence to waveguide modes is very efficient, typically greater than 40%. These features indicate that such perfect single crystals with a low density of defects and extremely smooth surfaces exhibit low propagation loss, which makes them good candidates for the design and the fabrication of novel organic optical fibers and lasers.

20.
Langmuir ; 33(26): 6492-6502, 2017 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-28594565

RESUMO

Molecular dynamics simulations in conjunction with the Martini coarse-grained model have been used to investigate the (nonequilibrium) behavior of helical 22-residue poly(γ-benzyl-l-glutamate) (PBLG) peptides at the water/vapor interface. Preformed PBLG mono- or bilayers homogeneously covering the water surface laterally collapse in tens of nanoseconds, exposing significant proportions of empty water surface. This behavior was also observed in recent AFM experiments at similar areas per monomer, where a complete coverage had been assumed in earlier work. In the simulations, depending on the area per monomer, either elongated clusters or fibrils form, whose heights (together with the portion of empty water surface) increase over time. Peptides tend to align with respect to the fiber axis or with the major principal axis of the cluster, respectively. The aspect ratio of the cluster observed is 1.7 and, hence, comparable to though somewhat smaller than the aspect ratio of the peptides in α-helical conformation, which is 2.2. The heights of the fibrils is 3 nm after 20 ns and increases to 4.5 nm if the relaxation time is increased by 2 orders of magnitude, in agreement with the experiment. Aggregates with heights of about 3 or 4.5 nm are found to correspond to local bi- or trilayer structures, respectively.


Assuntos
Simulação de Dinâmica Molecular , Bicamadas Lipídicas , Conformação Molecular , Peptídeos , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...