Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Blood Cancer J ; 12(3): 36, 2022 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-35256592

RESUMO

Diffuse large B-cell lymphoma (DLBCL) is the most common lymphoma subtype. Despite the proven efficacy of combined immunochemotherapy (R-CHOP) in the majority of patients, ~40% of DLBCL patients do not respond or will relapse and consequently have a very poor prognosis. The development of targeted therapies has not improved patient survival, underscoring the need for new treatment approaches. Using an unbiased genome-wide CD20 guilt-by-association approach in more than 1800 DLBCL patients, we previously identified the estrogen receptor beta (ERß) as a new target in DLBCL. Here, we demonstrate that ERß is expressed at significantly higher levels in DLBCL compared to normal B cells, and ERß plays a role in the protection against apoptosis in DLBCL. Targeting of the ERß with the selective estrogen receptor modulator tamoxifen reduces cell viability in all tested DLBCL cell lines. Tamoxifen-induced cell death was significantly decreased in an ERß knock-out cell line. The activity of tamoxifen was confirmed in a xenograft human lymphoma model, as tumor growth decreased, and survival significantly improved. Finally, tamoxifen-treated breast cancer (BC) patients showed a significantly reduced risk of 38% for DLBCL compared to BC patients who did not receive tamoxifen. Our findings provide a rationale to investigate tamoxifen, a hormonal drug with a good safety profile, in DLBCL patients.


Assuntos
Receptor beta de Estrogênio , Linfoma Difuso de Grandes Células B , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Ciclofosfamida/uso terapêutico , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Receptor beta de Estrogênio/genética , Receptor beta de Estrogênio/metabolismo , Receptor beta de Estrogênio/uso terapêutico , Humanos , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/metabolismo , Recidiva Local de Neoplasia/tratamento farmacológico , Rituximab/uso terapêutico , Tamoxifeno/farmacologia , Tamoxifeno/uso terapêutico , Vincristina/uso terapêutico
2.
Ther Adv Hematol ; 11: 2040620719898373, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32010435

RESUMO

BACKGROUND: Diffuse large B-cell lymphoma (DLBCL) is a heterogeneous disease, characterized by high levels of genomic instability and the activation of DNA damage repair pathways. We previously found high expression of the cell cycle regulator WEE1 in DLBCL cell lines. Here, we investigated the combination of the WEE1 inhibitor, AZD1775, with cyclophosphamide, doxorubicin, vincristine and prednisone (CHOP) and radiation therapy (RT), with the aim of improving first-line treatment. METHODS: Cell viability experiments were performed to determine synergistic combinations. Levels of DNA damage were established using flow cytometry for γH2AX and protein analysis for DNA damage response proteins CHK1 and CHK2. Flow cytometry analysis for cell cycle and pH3 were performed to determine cell cycle distribution and premature mitotic entry. RESULTS: Treatment with either RT or CHOP led to enhanced sensitivity to AZD1775 in several DLBCL cell lines. Treatment of cells with AZD1775 induced unscheduled mitotic progression, resulting in abnormal cell cycle distribution in combination with RT or CHOP treatment. In addition, a significant increase in DNA damage was observed compared with CHOP or RT alone. Of the single CHOP components, doxorubicin showed the strongest effect together with AZD1775, reducing viability and increasing DNA damage. CONCLUSION: In conclusion, the combination of RT or CHOP with AZD1775 enhances sensitivity to WEE1 inhibition through unscheduled G2/M progression, leading to increased DNA damage. Based on these results, WEE1 inhibition has great potential together with other G2/M arresting or DNA damaging (chemo) therapeutic compounds and should be further explored in clinical trials.

3.
Int J Mol Sci ; 20(23)2019 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-31801186

RESUMO

Expression of the anti-apoptotic B-cell lymphoma 2 (BCL-2) protein in patients with diffuse large B-cell lymphoma (DLBCL) strongly correlates with resistance to standard therapy with cyclophosphamide, vincristine, doxorubicin, prednisolone, and rituximab (R-CHOP). Although studies focus mainly on the contribution of BCL-2, here we also investigate the contribution of other anti-apoptotic proteins to CHOP-therapy resistance in DLBCL. Functional dynamic BCL-2 homology (BH)3 profiling was applied to DLBCL cell lines upon CHOP treatment or single CHOP compounds. Cell-specific anti-apoptotic dependencies were validated with corresponding BH3-mimetics. We found high expression of anti-apoptotic BCL-2, MCL-1, and BCL-XL in DLBCL cell lines and patients. CHOP treatment resulted in both enhanced and altered anti-apoptotic dependency. Enhanced sensitivity to different BH3-mimetics after CHOP treatment was confirmed in specific cell lines, indicating heterogeneity of CHOP-induced resistance in DLBCL. Analysis of single CHOP compounds demonstrated that similar changes could also be induced by doxorubicin or vincristine, providing evidence for clinical combination therapies of doxorubicin or vincristine with BH3-mimetics in DLBCL. In conclusion, we show for the first time that CHOP treatment induces increased anti-apoptotic dependency on MCL-1 and BCL-XL, and not just BCL-2. These results provide new perspectives for the treatment of CHOP-resistant DLBCL and underline the potential of BH3 profiling in predicting therapy outcomes.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteína bcl-X/genética , Compostos de Anilina/farmacologia , Antineoplásicos/farmacologia , Proteína 11 Semelhante a Bcl-2/genética , Proteína 11 Semelhante a Bcl-2/metabolismo , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Ciclofosfamida/uso terapêutico , Doxorrubicina/uso terapêutico , Humanos , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/metabolismo , Linfoma Difuso de Grandes Células B/patologia , Proteína de Sequência 1 de Leucemia de Células Mieloides/antagonistas & inibidores , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Prednisona/uso terapêutico , Prognóstico , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Pirimidinas/farmacologia , Rituximab/uso terapêutico , Transdução de Sinais , Sulfonamidas/farmacologia , Tiofenos/farmacologia , Resultado do Tratamento , Vincristina/uso terapêutico , Proteína bcl-X/antagonistas & inibidores , Proteína bcl-X/metabolismo
4.
Cancers (Basel) ; 11(11)2019 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-31703356

RESUMO

Genomically unstable cancers are dependent on specific cell cycle checkpoints to maintain viability and prevent apoptosis. The cell cycle checkpoint protein WEE1 is highly expressed in genomically unstable cancers, including diffuse large B-cell lymphoma (DLBCL). Although WEE1 inhibition effectively induces apoptosis in cancer cells, the effect of WEE1 inhibition on anti-apoptotic dependency is not well understood. We show that inhibition of WEE1 by AZD1775 induces DNA damage and pre-mitotic entry in DLBCL, thereby enhancing dependency on BCL-2 and/or MCL-1. Combining AZD1775 with anti-apoptotic inhibitors such as venetoclax (BCL-2i) or S63845 (MCL-1i) enhanced sensitivity in a cell-specific manner. In addition, we demonstrate that both G2/M cell cycle arrest and DNA damage induction put a similar stress on DLBCL cells, thereby enhancing anti-apoptotic dependency. Therefore, genotoxic or cell cycle disrupting agents combined with specific anti-apoptotic inhibitors may be very effective in genomic unstable cancers such as DLBCL and therefore warrants further clinical evaluation.

5.
Oncotarget ; 8(58): 98298-98311, 2017 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-29228690

RESUMO

Cartilage oligomeric matrix protein (COMP) was recently implicated in the progression of breast cancer. Immunostaining of 342 prostate cancer specimens in tissue microarrays showed that COMP expression is not breast cancer-specific but also occurs in prostate cancer. The expression of COMP in prostate cancer cells correlated with a more aggressive disease with faster recurrence. Subcutaneous xenografts in immunodeficient mice showed that the prostate cancer cell line DU145 overexpressing COMP formed larger tumors in vivo as compared to mock-transfected cells. Purified COMP bound to and enhanced the invasion of DU145 cells in vitro in an integrin-dependent manner. In addition, intracellular COMP expression interfered with cellular metabolism by causing a decreased level of oxidative phosphorylation with a concurrent upregulation of lactate production (Warburg effect). Further, expression of COMP protected cells from induction of apoptosis via several pathways. The effect of COMP on metabolism and apoptosis induction was dependent on the ability of COMP to disrupt intracellular Ca2+ signalling by preventing Ca2+ release from the endoplasmic reticulum. In conclusion, COMP is a potent driver of the progression of prostate cancer, acting in an anti-apoptotic fashion by interfering with the Ca2+ homeostasis of cancer cells.

6.
BMC Cancer ; 15: 737, 2015 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-26480818

RESUMO

BACKGROUND: The human Sushi Domain-Containing Protein 4 (SUSD4) was recently shown to function as a novel inhibitor of the complement system, but its role in tumor progression is unknown. METHODS: Using immunohistochemistry and quantitative PCR, we investigated SUSD4 expression in breast cancer tissue samples from two cohorts. The effect of SUSD4 expression on cell migration and invasion was studied in vitro using two human breast cancer cell lines overexpressing SUSD4. RESULTS: Tissue stainings revealed that both tumor cells and tumor-infiltrating cells expressed SUSD4. The highest SUSD4 expression was detected in differentiated tumors with decreased rate of metastasis, and SUSD4 expression was associated with improved survival of the patients. Moreover, forced SUSD4 expression in human breast cancer cells attenuated their migratory and invasive traits in culture. SUSD4 expression also inhibited colony formation of human breast cancer cells cultured on carcinoma-associated fibroblasts. Furthermore, large numbers of SUSD4-expressing T cells in the tumor stroma associated with better overall survival of the breast cancer patients. CONCLUSION: Our findings indicate that SUSD4 expression in both breast cancer cells and T cells infiltrating the tumor-associated stroma is useful to predict better prognosis of breast cancer patients.


Assuntos
Neoplasias da Mama/genética , Proteínas Inativadoras do Complemento/genética , Regulação Neoplásica da Expressão Gênica , Proteínas de Membrana/genética , RNA Neoplásico/genética , Linfócitos T/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proteínas Inativadoras do Complemento/biossíntese , Feminino , Humanos , Imuno-Histoquímica , Proteínas de Membrana/biossíntese , Microscopia de Fluorescência , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase , Prognóstico , Linfócitos T/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...