Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ChemSusChem ; : e202400592, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38923396

RESUMO

Despite rapid technological progress, heavy metal water pollution, particularly arsenic contamination, remains a significant global challenge. The stabilization of trivalent arsenic as neutral arsenite (AsIII) species hinders its removal by conventional adsorption methods. While adsorption of anionic arsenate (AsV) species is in principle more feasible, there are only a few adsorbents capable of adsorbing both forms of arsenic. In this work we study the potential of two well-known families of Metal-Organic Frameworks (MOFs), UiO-66 and MIL-125, to simultaneously adsorb and photo-oxidize arsenic species from water. Our results demonstrate that the formation of AsV ions upon light irradiation promotes the subsequent adsorption of additional AsIII species. Thus, we propose the combined utilization of photocatalysis and adsorption technologies for water remediation purposes.

2.
Adv Mater ; 36(24): e2312084, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38447132

RESUMO

Melt electrowriting (MEW) is an emerging additive manufacturing (AM) technology that enables the precise deposition of continuous polymeric microfibers, allowing for the creation of high-resolution constructs. In recent years, MEW has undergone a revolution, with the introduction of active properties or additional functionalities through novel polymer processing strategies, the incorporation of functional fillers, postprocessing, or the combination with other techniques. While extensively explored in biomedical applications, MEW's potential in other fields remains untapped. Thus, this review explores MEW's characteristics from a materials science perspective, emphasizing the diverse range of materials and composites processed by this technique and their current and potential applications. Additionally, the prospects offered by postprinting processing techniques are explored, together with the synergy achieved by combining melt electrowriting with other manufacturing methods. By highlighting the untapped potentials of MEW, this review aims to inspire research groups across various fields to leverage this technology for innovative endeavors.

3.
ACS Biomater Sci Eng ; 10(3): 1843-1855, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-37988293

RESUMO

The incorporation of 3D-printing principles with electrohydrodynamic (EHD) jetting provides a harmonious balance between resolution and processing speed, allowing for the creation of high-resolution centimeter-scale constructs. Typically, EHD jetting of polymer melts offers the advantage of rapid solidification, while processing polymer solutions requires solvent evaporation to transition into solid fibers, creating challenges for reliable printing. This study navigates a hybrid approach aimed at minimizing printing instabilities by combining viscous solutions and achieving rapid solidification through freezing. Our method introduces and fully describes a modified open-source 3D printer equipped with a frozen collector that operates at -35 °C. As a proof of concept, highly concentrated silk fibroin aqueous solutions are processed into stable micrometer scale jets, which rapidly solidify upon contact with the frozen collector. This results in the formation of uniform microfibers characterized by an average diameter of 27 ± 5 µm, a textured surface, and porous internal channels. The absence of instabilities and the notably fast direct writing speed of 42 mm·s-1 enable precise, fast, and reliable deposition of these fibers into porous constructs spanning several centimeters. The effectiveness of this approach is demonstrated by the consistent production of biologically relevant scaffolds that can be customized with varying pore sizes and shapes. The achieved degree of control over micrometric jet solidification and deposition dynamics represents a significant advancement in EHD jetting, particularly within the domain of aqueous polymer solutions, offering new opportunities for the development of intricate and functional biological structures.


Assuntos
Fibroínas , Alicerces Teciduais/química , Polímeros/química , Água , Impressão Tridimensional
4.
Macromol Rapid Commun ; 44(24): e2300424, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37821091

RESUMO

This study demonstrates how either a heated flat or cylindrical collector enables defect-free melt electrowriting (MEW) of complex geometries from high melting temperature polymers. The open-source "MEWron" printer uses nylon-12 filament and combined with a heated flat or cylindrical collector, produces well-defined fibers with diameters ranging from 33 ± 4 to 95 ± 3 µm. Processing parameters for stable jet formation and minimal defects based on COMSOL thermal modeling for hardware design are optimized. The balance of processing temperature and collector temperature is achieved to achieve auxetic patterns, while showing that annealing nylon-12 tubes significantly alters their mechanical properties. The samples exhibit varied pore sizes and wall thicknesses influenced by jet dynamics and fiber bridging. Tensile testing shows nylon-12 tubes are notably stronger than poly(ε-caprolactone) ones and while annealing has limited impact on tensile strength, yield, and elastic modulus, it dramatically reduces elongation. The equipment described and material used broadens MEW applications for high melting point polymers and highlights the importance of cooling dynamics for reproducible samples.


Assuntos
Engenharia Tecidual , Alicerces Teciduais , Polímeros , Nylons
5.
Small ; 19(7): e2205255, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36482162

RESUMO

Among the various electrohydrodynamic (EHD) processing techniques, electrowriting (EW) produces the most complex 3D structures. Aqueous solution EW similarly retains the potential for additive manufacturing well-resolved 3D structures, while providing new opportunities for processing biologically derived polymers and eschewing organic solvents. However, research on aqueous-based EHD processing is still limited. To summarize the field and advocate for increased use of aqueous bio-based materials, this review summarizes the most significant contributions of aqueous solution processing. Special emphasis has been placed on understanding the effects of different printing parameters, the prospects for 3D processing new materials, and future challenges.

6.
Nanomaterials (Basel) ; 12(23)2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36500886

RESUMO

Hexavalent chromium (Cr(VI)) is a highly mobile cancerogenic and teratogenic heavy metal ion. Among the varied technologies applied today to address chromium water pollution, photocatalysis offers a rapid reduction of Cr(VI) to the less toxic Cr(III). In contrast to classic photocatalysts, Metal-Organic frameworks (MOFs) are porous semiconductors that can couple the Cr(VI) to Cr(III) photoreduction to the chromium species immobilization. In this minireview, we wish to discuss and analyze the state-of-the-art of MOFs for Cr(VI) detoxification and contextualizing it to the most recent advances and strategies of MOFs for photocatalysis purposes. The minireview has been structured in three sections: (i) a detailed discussion of the specific experimental techniques employed to characterize MOF photocatalysts, (ii) a description and identification of the key characteristics of MOFs for Cr(VI) photoreduction, and (iii) an outlook and perspective section in order to identify future trends.

7.
Chemistry ; 26(61): 13861-13872, 2020 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-32557884

RESUMO

Acute CrVI water pollution due to anthropogenic activities is an increasing worldwide concern. The high toxicity and mobility of CrVI makes it necessary to develop dual adsorbent/ion-reductive materials that are able to capture CrVI and transform it efficiently into the less hazardous CrIII . An accurate description of chromium speciation at the adsorbent/ion-reductive matrix is key to assessing whether CrVI is completely reduced to CrIII , or if its incomplete transformation has led to the stabilization of highly reactive, transient CrV species within the material. With this goal in mind, a dual ultraviolet-visible and electron paramagnetic spectroscopy approach has been applied to determine the chromium speciation within zirconium-based metal-organic frameworks (MOFs). Our findings point out that the generation of defects at Zr-MOFs boosts CrVI adsorption, whilst the presence of reductive groups on the organic linkers play a key role in stabilizing it as isolated and/or clustered CrIII ions.

8.
Chemosphere ; 250: 126299, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32113095

RESUMO

Emerging pollutants represent a new global problem for water quality. As these compounds get into the environment, they cause severe threats to aquatic environments and human health and are typically resistant to conventional wastewater treatments. In this work, TiO2 nanoparticles surface was functionalized with silver (Ag) nanoparticles, and solvent cast and electrospun membranes of poly (vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) were prepared with different concentrations of TiO2 and Ag-TiO2 to produce a multifunctional material. The photocatalytic activity of the nanocomposites was evaluated through the degradation of norfloxacin under ultraviolet (UV) and visible radiation. It is shown that nanocomposites with Ag-TiO2 show the highest degradation efficiencies: 64.2% under UV and 80.7% under visible radiation, for 90 and 300 min, respectively. Furthermore, the recyclability of the membranes has also been demonstrated. Finally, it is shown the antimicrobial activity of the nanocomposite membranes, demonstrating the suitability of the Ag-TiO2/PVDF-HFP nanocomposites as multifunctional photocatalytic and antimicrobial membranes for water remediation applications.


Assuntos
Nanocompostos/química , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Antibacterianos , Luz , Membranas Artificiais , Prata , Titânio , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias , Água , Poluentes da Água
9.
Materials (Basel) ; 13(3)2020 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-32041217

RESUMO

Cellulose nanocrystals (CNCs) were incorporated into poly (vinylidene fluoride) (PVDF) to tailor the mechanical and dielectric properties of this electroactive polymer. PVDF/CNC nanocomposites with concentrations up to 15 wt.% were prepared by solvent-casting followed by quick vacuum drying in order to ensure the formation of the electroactive γ-phase. The changes induced by the presence of CNCs on the morphology of PVDF and its crystalline structure, thermal properties, mechanical performance and dielectric behavior are explored. The results suggest a relevant role of the CNC surface -OH groups, which interact with PVDF fluorine atoms. The real dielectric constant ε' of nanocomposites at 200 Hz was found to increase by 3.6 times up to 47 for the 15 wt.% CNC nanocomposite due to an enhanced ionic conductivity provided by CNCs. The approach reported here in order to boost the formation of the γ-phase of PVDF upon the incorporation of CNCs serves to further develop cellulose-based multifunctional materials.

10.
ACS Appl Mater Interfaces ; 11(33): 30197-30206, 2019 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-31330104

RESUMO

This work reports on the development of ionic liquid (IL)/silk fibroin (SF) composite films as electroactive polymers actuators. Different contents (20, 40, and 60% wt) of 1-butyl-3-methylimidazolium tricyanomethanide ([Bmim][C(CN3)]) and choline dihydrogen phosphate ([Ch][DHP]) ILs were incorporated into the SF polymer matrix. Due to IL-SF interactions, morphological changes such as globule-like nanostructures are induced in the samples. High concentrations of IL promote SF ß-sheet formation above 65%. Further, an increase in the thermal stability of the SF was observed through the incorporation of [Bmim][C(CN3)]. IL type and content allow tuning of the electrical response as well as achieving bending actuation. [Bmim][C(CN3)]/SF samples allow bending responses up to 0.5 at an applied voltage of 3 V. In conclusion, this work demonstrates the ability of IL/SF composites to act as electroactive polymer actuators and opens new perspectives in the application of natural resources for smart materials.

11.
Nanoscale Adv ; 1(6): 2284-2292, 2019 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-36131973

RESUMO

Environmental issues promote the development of sensors based on natural polymers which are becoming an area of increasing interest. Piezoresistive sensors based on silk fibroin with carbon nanotubes (CNTs) as fillers were produced by solvent-casting in order to tune their electrical conductivity and electromechanical responses. It is shown that the carbonaceous fillers are well dispersed in the polymer matrix and the thermal and mechanical properties are independent of the CNT content. On the other hand, the inclusion of CNTs reduces the ß-sheet content of silk fibroin and the electrical properties of the composite strongly depend on the filler content, the percolation threshold being around 1 wt% CNTs. The piezoresistive response demonstrates good reproducibility during cyclic loading without hysteresis with a piezoresistive sensitivity of ∼4 MPa-1, regardless of the CNT content. Overall, the results confirm that polymer composites based on natural polymers exhibit excellent piezoresistive responses, also demonstrated by the implementation and testing of a pressure sensor with the corresponding readout electronics. Thus, it is shown that natural polymers such as silk fibroin will allow the development of a new generation of multifunctional force and deformation sensors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...