Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Sports Act Living ; 5: 1308033, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38107674

RESUMO

Introduction: The aim of this study was to explore which key somatic features are common to four swim strokes and medley, and specifically to identify which characteristics benefit only specific strokes. Methods: The sample was composed of 130 swimmers (95 males aged 19.5 ± 2.9 years and 35 females aged 18.4 ± 2.8 years). A set of anthropometric variables was used to predict swimming speed in the four swimming strokes and medley. Results: A multiplicative model with allometric body size components was used to identify the demographic and anthropometric predictors of swimming speed. Trunk height and waist circumference were the only variables significantly different among swimming strokes (p < 0.05). Associations between swimming speed and arm length were similar in breaststroke and medley, and in freestyle, backstroke and butterfly (R2 = 60.9%). The model retained as swimming speed predictors the age2, upper body circumference, hand breadth, waist circumference, and subscapular skinfold thickness (these last two had negative associations). Conclusion: All these predictors were common to all four swim strokes and medley. Arm length was also retained as a significant predictor, but this one varied significantly between the four different swim strokes and medley. These findings highlight the importance of having a "V-shape" trunk, longer upper limbs, and large hands as predictors of swimming performance.

2.
Front Physiol ; 14: 1260346, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38156067

RESUMO

This study aimed to evaluate the test-retest reliability of a sprint performance test with semi-tethered front crawl swimming to indirectly assess the current potential to perform at maximal anaerobic effort in adolescent swimmers. Eight adolescent swimmers participated in this study (gender: females (n = 4) aged 13.0 ± 0.8 years, body height 1.6 ± 0.0 m, body mass 50.1 ± 4.5 kg; and males (n = 4) aged 13.3 ± 1.3 years, body height 1.7 ± 0.1 m, body mass 59.0 ± 8.2 kg. The testing protocol consisted of two trials of 25 m semi-tethered front crawl swimming with maximal effort and with 1 kg resisted isotonic load. Velocity data were recorded automatically by the 1080 Sprint device for 15 m (between 3 m and 18 m). The Fast Fourier Transform algorithm filtered raw instantaneous swimming velocity data in distance (time) function. A third-degree polynomial was used to extract the individual velocity profile, from which the following variables were chosen for test-retest reliability and the assessment of sprint performance: ttrial15, vmax, vmin, tvto max, tvat max, Dto vmax, Dat vmax, fatigue index. Parameters such as vmax, vmin, and ttrial15 were estimated from swimming velocity profiles and considered as reliable. The CV showed low variance <5%; while ICC2,1 demonstrated respectively good (ICC2,1: 0.88), very good (ICC2,1: 0.95), and excellent (ICC2,1: 0.98) rate of relative reliability; and the Bland-Altman index revealed an acceptable agreement (LoA ≤5%) between two measurements. The sprint performance test based on semi-tethered front crawl swimming confirmed that ttrial15, vmax, and vmin were reliable variables to indirectly indicate a potential to perform the maximal anaerobic effort among adolescent swimmers. The evaluation of the swimming velocity profiles allows coaches to monitor the adaptive changes of performance during the training process.

3.
Front Physiol ; 14: 1157359, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37593236

RESUMO

It has been suggested that sex distinctions in physiology may affect the swimming performance of each sex differently. Yet, sex-based performance dependency has not been taken into consideration by most of the researchers evaluating swimming start. Therefore, the purpose of this research was to determine the effect of sex heterogeneity on the spatiotemporal characteristics of swimming start by investigating the determinants of its performance. A total of fifty-two international-level swimmers (thirty females and twenty-two males) performed three repetitions of the kick-start up to the 15-m mark. During trials, data were collected using video cameras and instrumented starting block. To search for evidence of differences between the two groups, the one-way ANOVA was conducted. Pearson's correlation coefficients were calculated between measurements widely used to describe overall starting performance and selected kinematical variables of swimming start. A sex effect was exposed for temporal variables describing all swimming start phases (p ≤ 0.015). Male swimmers, by spending less time during the push-off from the starting block (p = 0.002; η p 2 = 0.18), reaching higher take-off velocity (p < 0.001; η p 2 = 0.29), traveling longer distances during flight (p < 0.001; η p 2 = 0.40), and swimming faster in the water phase (p < 0.001; η p 2 = 0.40), took starting advantage over their female counterparts. Consequently, performance measures such as 5-m, 10-m, and 15-m start times indicated that male participants were faster than females (p < 0.001; η p 2 ≥ 0.40). Only in the group of male swimmers a significant correlation between variables describing overall starting performance (5-m, 10-m, and 15-m times), and variables commonly highlighted as starting performance determining factors (block phase duration, take-off horizontal velocity, and flight distance) was found. The current study shows that the spatiotemporal variables of swimming start, the relation between them as well as overall starting performance, vary by sex. Consequently, the requirement of sex factor and its heterogeneity effect should be included not only in detailed characteristics of separate variables but also in all approaches undertaken. Those findings seem to play a crucial role mainly in swimming start evaluations in post-pubertal age groups of swimmers.

4.
Artigo em Inglês | MEDLINE | ID: mdl-35270414

RESUMO

The current study examined the back plate position impact on the block phase movement pattern and total starting performance with a distinction for sex. Thirty-eight swimmers performed starts changing the back plate position (preferred position, one position forward and one position backward), with the data being assessed using a 3D dynamometric central and a video camera. In males, the 15 m start time was 0.1 s shorter for the preferred position compared with the backward position (p < 0.05). Regardless of the back plate positioning, the swimmers spent a similar time on the block. A more forward position of the back plate postponed the rear foot take-off and consequently reduced the front foot stand duration. A back plate position effect was revealed for those variables with a larger effect size in males whereas in females, a change of about two positions was needed to reach a significance level. Probably due to the specification of physical domains, a greater impact on the changes introduced was noted for males. Therefore, whilst searching for the optimal starting position, adjustments to the back plate placement might affect a greater number of males than females. To reinforce the starting optimization during the training process and its monitoring, the effect of personal preference toward the starting block setting was also considered.


Assuntos
, Natação , Fenômenos Biomecânicos , Feminino , Humanos , Masculino
5.
PLoS One ; 15(8): e0236504, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32745109

RESUMO

The aim of this study was to compare underwater fin swimming performance using dolphin, flutter and breaststroke kicks with and without diving gear. Performance was evaluated in terms of average swimming velocity. The parameters of spatiotemporal structure of the stroke reflecting to the swimming economy were employed. Conscious modifications in propulsion technique were considered here with the aim of controlling swimming performance. A total of ten professional scuba divers swam at maximal speed underwater for 50m using each of three techniques: dolphin, flutter, or breaststroke kicks. Swimmers' performance was compared between holding their breath and using breathing apparatus. Two cameras recorded their movements in sagittal and transverse planes. The average swimming velocity (vav), stroke length (SL), stroke rate (SR), index of variation of intracycle velocity (VIVIndex) and stroke index (SI) were estimated. Relative to the other techniques, the dolphin kick without a diving gear demonstrated the highest vav and low SI and VIVIndex values, which reflects the most advantageous economy of propulsion at given velocity. Given the lack of statistical differences, using the breaststroke kick and flutter kick when swimming with a diving gear seems to be comparable to dolphin-kick in terms of average velocity and parameters reflecting the economy of propulsion. Thus, a search for fin swimming techniques with the aim of achieving specific goals seemed reasonable. The results suggest, that performance achieved while using various fin swimming techniques was probably controlled by different strategies of leg movements. These strategies revealed differences in a spatiotemporal (SR-SL) structure of the stroke and they were closely associated in terms of the velocity variation decrease.


Assuntos
Fenômenos Biomecânicos/fisiologia , Mergulho/fisiologia , Golfinhos/fisiologia , Natação/fisiologia , Animais , Braço/fisiologia , Humanos , Masculino , Movimento/fisiologia
6.
Artigo em Inglês | MEDLINE | ID: mdl-32481625

RESUMO

In this study, we compared adolescents' actual (expert assessed) front crawl swimming skills to their self-assessment in two conditions: in standard swimming (wearing a swimsuit and goggles) and in a simulated risk scenario (swimming in plain clothes without goggles). We postulated that education focused on water competencies is fundamental in preventing drownings. Experts evaluated the skills of 21 female and 21 male adolescents in both standard and challenging conditions. All were low-skilled swimmers aged 14-15 years. Participants were asked to self-assess their skills before and after each trial. Boys and girls covered the same distance in both trials. Their self-assessment did not change regardless of the difficulty of the conditions. Girls assessed themselves more accurately than boys. However, boys who underestimated their skills showed greater ability to utilise the experience gained from performing the task for a more accurate self-assessment. In conclusion, adolescents should be educated in total water competencies, and not merely in swimming skills. For girls, "water readiness" is thought to broaden their ability to adapt their swimming skills to nonstandard conditions. Aquatic education for boys should focus on developing self-reflection in order to create a long-lasting responsibility using their own swimming skills.


Assuntos
Afogamento , Natação , Adolescente , Feminino , Humanos , Masculino , Autoavaliação (Psicologia) , Água
7.
Acta Bioeng Biomech ; 20(4): 151-159, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30821288

RESUMO

PURPOSE: Early identification of anthropological potential in swimmers is considered important to the recruitment and selection of children and adolescents to perform extensive and strenuous training. The aim of the research was a comparative analysis of the anthropometric parameters and indicators of adult, elite swimmers with people who had never trained for swimming. It was assumed that the specific characteristics of the swimmers' somatic composition referred to the laws of swimming biomechanics. METHODS: Anthropometric measurements were taken in a group of elite male swimmers (N = 28), aged 17-24. The same set of measurements was taken in a homogeneous control group of students of physical education. An anthropometric profile significantly differentiating swimmers from the control group was constructed. Next, a linear forward stepwise discriminant analysis was conducted to investigate which indices can be used to distinguish the two groups. RESULTS: It seems significant that a specific somatic composition trait of swimmers in the form of a relatively long shank was observed, which had not been observed in earlier studies. Additionally, indices of relatively slim hand dimension, and indices describing a "reversed triangle" shape of trunk, were the most powerful discrimination variables between the two examined groups. CONCLUSION: The results obtained cannot be generalised to the entire population of swimmers, however referring them to the laws of biomechanics of swimming allows for the continuation of research into identifying the prognostic traits desirable for success among young swimmers.


Assuntos
Antropometria , Natação/fisiologia , Adulto , Fenômenos Biomecânicos , Análise Discriminante , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Estudantes , Adulto Jovem
8.
Acta Bioeng Biomech ; 19(2): 149-160, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28869635

RESUMO

PURPOSE: The aim of this study was to analyse changes taking place within selected kinematic parameters of the swimming start, after completing a six-week plyometric training, assuming that the take-off power training improves its effectiveness. METHODS: The experiment included nine male swimmers. In the pre-test the swimmers performed three starts focusing on the best performance. Next, a plyometric training programme, adapted from sprint running, was introduced in order to increase a power of the lower extremities. The programme entailed 75 minute sessions conducted twice a week. Afterwards, a post-test was performed, analogous to the pre-test. Spatio-temporal structure data of the swimming start were gathered from video recordings of the swimmer above and under water. RESULTS: Impulses triggered by the plyometric training contributed to a shorter start time (the main measure of start effectiveness) and glide time as well as increasing average take-off, flight and glide velocities including take-off, entry and glide instantaneous velocities. The glide angle decreased. CONCLUSIONS: The changes in selected parameters of the swimming start and its confirmed diagnostic values, showed the areas to be susceptible to plyometric training and suggested that applied plyometric training programme aimed at increasing take-off power enhances the effectiveness of the swimming start.


Assuntos
Desempenho Atlético/fisiologia , Condicionamento Físico Humano/métodos , Exercício Pliométrico/métodos , Desempenho Psicomotor/fisiologia , Tempo de Reação/fisiologia , Natação/fisiologia , Adulto , Humanos , Masculino
9.
J Sports Sci Med ; 12(1): 171-81, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24149742

RESUMO

The aim of this study was to analyze the error structure in propulsive movements with regard to its influence on monofin swimming speed. The random cycles performed by six swimmers were filmed during a progressive test (900m). An objective method to estimate errors committed in the area of angular displacement of the feet and monofin segments was employed. The parameters were compared with a previously described model. Mutual dependences between the level of errors, stroke frequency, stroke length and amplitude in relation to swimming velocity were analyzed. The results showed that proper foot movements and the avoidance of errors, arising at the distal part of the fin, ensure the progression of swimming speed. The individual stroke parameters distribution which consists of optimally increasing stroke frequency to the maximal possible level that enables the stabilization of stroke length leads to the minimization of errors. Identification of key elements in the stroke structure based on the analysis of errors committed should aid in improving monofin swimming technique. Key pointsThe monofin swimming technique was evaluated through the prism of objectively defined errors committed by the swimmers.The dependences between the level of errors, stroke rate, stroke length and amplitude in relation to swimming velocity were analyzed.Optimally increasing stroke rate to the maximal possible level that enables the stabilization of stroke length leads to the minimization of errors.Propriety foot movement and the avoidance of errors arising at the distal part of fin, provide for the progression of swimming speed.The key elements improving monofin swimming technique, based on the analysis of errors committed, were designated.

10.
J Sports Sci Med ; 11(4): 682-9, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-24150079

RESUMO

The aim of this study was an analysis of the time required to swim to a victim and tow them back to shore, while perfoming the flutter-kick and the dolphin-kick using fins. It has been hypothesized that using fins while using the dolphin-kick when swimming leads to reduced rescue time. Sixteen lifeguards took part in the study. The main tasks performed by them, were to approach and tow (double armpit) a dummy a distance of 50m while applying either the flutter-kick, or the dolphin-kick with fins. The analysis of the temporal parameters of both techniques of kicking demonstrates that, during the approach to the victim, neither the dolphin (tmean = 32.9s) or the flutter kick (tmean = 33.0s) were significantly faster than the other. However, when used for towing a victim the flutter kick (tmean = 47.1s) was significantly faster when compared to the dolphin-kick (tmean = 52.8s). An assessment of the level of technical skills in competitive swimming, and in approaching and towing the victim, were also conducted. Towing time was significantly correlated with the parameter that linked the temporal and technical dimensions of towing and swimming (difference between flutter kick towing time and dolphin-kick towing time, 100m medley time and the four swimming strokes evaluation). No similar interdependency has been discovered in flutter kick towing time. These findings suggest that the dolphin-kick is a more difficult skill to perform when towing the victim than the flutter-kick. Since the hypothesis stated was not confirmed, postulates were formulated on how to improve dolphin-kick technique with fins, in order to reduce swimming rescue time.

11.
J Appl Biomech ; 25(4): 340-50, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20095455

RESUMO

The aim of this study was to develop a functional model of monofin swimming by assigning numerical forms to certain technique parameters. The precise determination of optimal foot displacement and monofin strain points toward a model aspect for increasing swimming speed. Eleven professional swimmers were filmed underwater. The kinematic data were then used as entry variable for an artificial neural network, which itself created the foundation for a model of monofin swimming technique. The resulting network response graphs indicate a division set of standard deviation values in which the examined angular parameters of foot and monofin displacement achieve optimal values in terms of gaining maximal swimming speed. During the upward movement, it is essential to limit dorsal foot flexion (-20) from the parallel position toward the shin (180 degrees). During the downward movement, plantar flexion should not exceed 180 degrees. The optimal scope of the proximal part of the fin strain is 35 degrees in the downward move ment and (-)27 degrees in the upward; the angles of attack of the distal part of the fin and its entire surface are limited to 37 degrees in the downward movement and (-)26 degrees in the upward. Optimization criteria allowed for movement modification to gain and maintain maximal velocity during both cycle phases and to limit cycle velocity decrease.


Assuntos
Pé/fisiologia , Marcha/fisiologia , Modelos Biológicos , Movimento/fisiologia , Equipamentos Esportivos , Natação/fisiologia , Análise e Desempenho de Tarefas , Adolescente , Simulação por Computador , Módulo de Elasticidade , Desenho de Equipamento , Análise de Falha de Equipamento , Humanos , Masculino
12.
J Sports Sci Med ; 7(1): 67-77, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-24150136

RESUMO

This study aims to analysise the selected kinematic parameters of the monofin swimming turn. The high complexity of performing turns is hindered by the large surface of the monofin, which disturbs control and sense of the body in water. A lack of objective data available on monofin swimming turns has resulted in field research connected with the specification of parameters needed for the evaluation of the technique. Therefore, turns observed in elite swimmers contain underlying conclusions for objective criteria, ensuring the highest level of coaching and the improving of turns in young swimmers. Six, high level, male swimmers participated in the study. The subject of the analysis was the fastest turn, from one out of three trial turns made after swimming a distance of 25 m. Images of the turns were collected from two cameras located under water in accordance with the procedures of the previous analyses of freestyle turns. The images were digitized and analysed by the SIMI(®)- Movement Analysis System. The interdependency of the total turn time and the remaining recorded parameters, constituted the basis for analysis of the kinematic parameters of five turn phases. The interdependency was measured using r- Pearson's correlation coefficients. The novel character of the subject covered in this study, forced interpretation of the results on the basis of turn analyses in freestyle swimming. The results allow for the creation of a diagram outlinig area of search for an effective and efficient monofin swimming turn mechanism. The activities performed from the moment of wall contact until the commencement of stroking seem to be crucial for turn improvement. A strong belief has resulted that, the correct monofin swimming turn, is more than just a simple consequence of the fastest performance of all its components. The most important criteria in evaluating the quality of the monofin swimming turn are: striving for the optimal extension of wall contact time, push-off time and glide time. Key pointsShort time and large surface of the monofin additionally hinders complexity of the turn performance by disturbance in sensing and controlling body in water. Availability of no objective data on monofin swimming turns resulted in research in the field connected with specifying parameters needed for the technique evaluation.Correct turn technique may help to improve swimming race results.The diagram constructed on the basis of the interdependency of the total turn time and the remaining recorded kinematic parameters should establish the areas of searching for mechanism of effective and efficient monofin swimming turn.The most crucial, from the coaching and improving point of view, seem to be activities which take place from the moment of feet wall contact till the first propulsive movements. Therefore, the high quality of the monofin swimming turn technique is not just a simple consequence of the fastest performance of all its component parts.THE MOST IMPORTANT CRITERIA OF THE QUALITY IN THE MONOFIN SWIMMING TURN TECHNIQUE ARE: striving for extending in the optimum scope of wall contact time, the time of the push-off phase and the glide time.

13.
J Sports Sci Med ; 6(2): 193-203, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-24149329

RESUMO

In this study we employed an Artificial Neuronal Network to analyze the forces flexing the monofin in reaction to water resistance. In addition we selected and characterized key kinematic parameters of leg and monofin movements that define how to use a monofin efficiently and economically to achieve maximum swimming speed. By collecting the data recorded by strain gauges placed throughout the monofin, we were able to demonstrate the distribution of forces flexing the monofin in a single movement cycle. Kinematic and dynamic data were synchronized and used as entry variable to build up a Multi-Layer Perception Network. The horizontal velocity of the swimmer's center of body mass was used as an output variable. The network response graphs indicated the criteria for achieving maximum swimming speed. Our results pointed out the need to intensify the angular velocity of thigh extension and dorsal flexion of the feet, to strengthen velocity of attack of the tail and to accelerate the attack of the distal part of the fin. The other two parameters which should be taken into account are dynamics of tail flexion change in downbeat and dynamics of the change in angle of attack in upbeat. Key pointsThe one-dimensional structure of the monofin swimming creates favorable conditions to study the swimming technique.Monofin swimming modeling allows unequivocal interpretation of the propulsion structure. This further permits to define the mechanisms, which determine efficient propulsion.This study is the very first one in which the Neuronal Networks was applied to construct a functional/applicable to practice model of monofin swimming.The objective suggestions lead to formulating the criteria of monofin swimming technique, which plays the crucial role in achieving maximal swimming speed.Theoretical and empirical (realistic) verification created by parameters indicate by neural networks, paves the way for creating suitable models, which could be employed for other sports.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...