Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 128(10): 104303, 2008 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-18345884

RESUMO

An experimental study has been made of thermal electron attachment to the transition-metal trifluorophosphine complexes Ni(PF(3))(4) and Pt(PF(3))(4) using a flowing-afterglow Langmuir-probe apparatus. Both complexes are efficient at electron attachment, although the rate constants are somewhat less than collisional. The rate constant for electron attachment to Ni(PF(3))(4) is 1.9 x 10(-7) cm(3) s(-1) at room temperature, about a factor of 2 less than collisional. The activation energy is 39+/-5 meV for the attachment reaction. The rate constant for electron attachment to Pt(PF(3))(4) is 5.4 x 10(-8) cm(3) s(-1) at room temperature, and the activation energy is 84+/-8 meV. For both complexes, a PF(3) ligand is lost on electron attachment, and only the M(PF(3))(3)(-) ion is observed in the negative-ion mass spectrum. Density functional calculations were carried out on Ni(PF(3))(4) and various fragments in order to describe the thermochemistry of the attachment reaction.

2.
Chem Biol Interact ; 138(2): 201-15, 2001 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-11672702

RESUMO

In our efforts to identify agents that would specifically inhibit ALDH3A1, we had previously studied extensively the effect of an N(1)-alkyl, an N(1)-methoxy, and several N(1)-hydroxy-substituted ester derivatives of chlorpropamide on the catalytic activities of ALDH3A1s derived from human normal stomach mucosa (nALDH3A1) and human tumor cells (tALDH3A1), and of two recombinant aldehyde dehydrogenases, viz. human rALDH1A1 and rALDH2. The N(1)-methoxy analogue of chlorpropamide, viz. 4-chloro-N-methoxy-N-[(propylamino)carbonyl]benzenesulfonamide (API-2), was found to be a relatively selective and potent inhibitor of tALDH3A1-catalyzed oxidation as compared to its ability to inhibit nALDH3A-catalyzed oxidation, but even more potently inhibited ALDH2-catalyzed oxidation, whereas an ester analogue, viz. (acetyloxy)[(4-chlorophenyl)sulfonyl]carbamic acid 1,1-dimethylethyl ester (NPI-2), selectively inhibited tALDH3A1-catalyzed oxidation as compared to its ability to inhibit nALDH3A1-, ALDH1A1- and ALDH2-catalyzed oxidations, and this inhibition was apparently irreversible. Three additional chlorpropamide analogues, viz. 4-chloro-N,O-bis(ethoxycarbonyl)-N-hydroxybenzenesulfonamide (NPI-4), N,O-bis(carbomethoxy)methanesulfohydroxamic acid (NPI-5), and 2-[(ethoxycarbonyl)oxy]-1,2-benzisothiazol-3(2H)-one 1,1-dioxide (NPI-6), were evaluated in the present investigation. Quantified were NAD-linked oxidation of benzaldehyde catalyzed by nALDH3A1 and tALDH3A1, and NAD-linked oxidation of acetaldehyde catalyzed by rALDH1A1 and rALDH2, all at 37 degrees C and pH 8.1, and in the presence and absence of inhibitor. NPI-4, NPI-5 and NPI-6 were not substrates for the oxidative reactions catalyzed by any of the ALDHs studied. Oxidative reactions catalyzed by the ALDH3A1s, rALDH1A1 and rALDH2 were each inhibited by NPI-4 and NPI-5. NPI-6 was a poor inhibitor of nALDH3A1- and tALDH3A1-catalyzed oxidations, but was a relatively potent inhibitor of rALDH1A1- and rALDH2-catalyzed oxidations. In all cases, inhibition of ALDH-catalyzed oxidation was directly related to the product of inhibitor concentration and preincubation (enzyme+inhibitor) time. As judged by the product values (microM x min) required to effect 50% inhibition (IC(50)): (1) nALDH3A1 and tALDH3A1 were essentially equisensitive to inhibition by NPI-4 and NPI-5, and both enzymes were poorly inhibited by NPI-6; (2) rALDH1A1 was, relative to the ALDH3A1s, slightly more sensitive to inhibition by NPI-4 and NPI-5, and far more sensitive to inhibition by NPI-6; and (3) rALDH1A1 was, relative to rALDH2, essentially equisensitive to inhibition by NPI-5, whereas, it was slightly more sensitive to inhibition by NPI-4 and NPI-6.


Assuntos
Aldeído Desidrogenase/antagonistas & inibidores , Clorpropamida/análogos & derivados , Isoenzimas/antagonistas & inibidores , Aldeído Desidrogenase/metabolismo , Família Aldeído Desidrogenase 1 , Aldeído-Desidrogenase Mitocondrial , Clorpropamida/química , Clorpropamida/farmacologia , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Mucosa Gástrica/enzimologia , Humanos , Isoenzimas/metabolismo , Neoplasias/enzimologia , Oxirredução , Proteínas Recombinantes/antagonistas & inibidores , Proteínas Recombinantes/metabolismo , Retinal Desidrogenase , Relação Estrutura-Atividade , Células Tumorais Cultivadas/enzimologia
3.
Chem Biol Interact ; 130-132(1-3): 135-49, 2001 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-11306038

RESUMO

In our efforts to identify agents that would specifically inhibit ALDH3A1, we had previously studied extensively the effect of an N(1)-alkyl, an N(1)-methoxy, and several N(1)-hydroxy-substituted ester derivatives of chlorpropamide on the catalytic activities of ALDH3A1s derived from human normal stomach mucosa (nALDH3A1) and human tumor cells (tALDH3A1), and of two recombinant aldehyde dehydrogenases, viz. human rALDH1A1 and rALDH2. The N(1)-methoxy analogue of chlorpropamide, viz. 4-chloro-N-methoxy-N-[(propylamino)carbonyl]benzenesulfonamide (API-2), was found to be a relatively selective and potent inhibitor of tALDH3A1-catalyzed oxidation as compared to its ability to inhibit nALDH3A-catalyzed oxidation, but even more potently inhibited ALDH2-catalyzed oxidation, whereas an ester analogue, viz. (acetyloxy)[(4-chlorophenyl)sulfonyl]carbamic acid 1,1-dimethylethyl ester (NPI-2), selectively inhibited tALDH3A1-catalyzed oxidation as compared to its ability to inhibit nALDH3A1-, ALDH1A1- and ALDH2-catalyzed oxidations, and this inhibition was apparently irreversible. Three additional chlorpropamide analogues, viz. 4-chloro-N,O-bis(ethoxycarbonyl)-N-hydroxybenzenesulfonamide (NPI-4), N,O-bis(carbomethoxy)methanesulfohydroxamic acid (NPI-5), and 2-[(ethoxycarbonyl)oxy]-1,2-benzisothiazol-3(2H)-one 1,1-dioxide (NPI-6), were evaluated in the present investigation. Quantified were NAD-linked oxidation of benzaldehyde catalyzed by nALDH3A1 and tALDH3A1, and NAD-linked oxidation of acetaldehyde catalyzed by rALDH1A1 and rALDH2, all at 37 degrees C and pH 8.1, and in the presence and absence of inhibitor. NPI-4, NPI-5 and NPI-6 were not substrates for the oxidative reactions catalyzed by any of the ALDHs studied. Oxidative reactions catalyzed by the ALDH3A1s, rALDH1A1 and rALDH2 were each inhibited by NPI-4 and NPI-5. NPI-6 was a poor inhibitor of nALDH3A1- and tALDH3A1-catalyzed oxidations, but was a relatively potent inhibitor of rALDH1A1- and rALDH2-catalyzed oxidations. In all cases, inhibition of ALDH-catalyzed oxidation was directly related to the product of inhibitor concentration and preincubation (enzyme+inhibitor) time. As judged by the product values (microMxmin) required to effect 50% inhibition (IC(50)): (1) nALDH3A1 and tALDH3A1 were essentially equisensitive to inhibition by NPI-4 and NPI-5, and both enzymes were poorly inhibited by NPI-6; (2) rALDH1A1 was, relative to the ALDH3A1s, slightly more sensitive to inhibition by NPI-4 and NPI-5, and far more sensitive to inhibition by NPI-6; and (3) rALDH1A1 was, relative to rALDH2, essentially equisensitive to inhibition by NPI-5, whereas, it was slightly more sensitive to inhibition by NPI-4 and NPI-6.


Assuntos
Aldeído Desidrogenase/antagonistas & inibidores , Clorpropamida/análogos & derivados , Aldeído Desidrogenase/metabolismo , Clorpropamida/química , Clorpropamida/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Mucosa Gástrica/enzimologia , Humanos , Técnicas In Vitro , Cinética , Neoplasias/enzimologia , Oxirredução , Proteínas Recombinantes/antagonistas & inibidores , Proteínas Recombinantes/metabolismo , Relação Estrutura-Atividade
4.
Arch Biochem Biophys ; 384(2): 418-24, 2000 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-11368333

RESUMO

The tobacco-specific nitrosamine, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), is a potent lung carcinogen in the A/J mouse, and is believed to be a causative agent for human lung cancer. NNK requires metabolic activation by alpha-hydroxylation to exert its carcinogenic potential. The human P450, 2A6 is a catalyst of this reaction. There are two closely related enzymes in the mouse, P450 2A4 and 2A5, which differ from each other by only 11 amino acids. In the present study these two mouse P450s were expressed in Spodoptera frugiperda (Sf9) cells using recombinant baculovirus. The catalysis of NNK metabolism by Sf9 microsomal fractions containing either P450 2A4 or 2A5 was determined. Both enzymes catalyzed the alpha-hydroxylation of NNK but with strikingly different efficiencies and specificities. P450 2A5 preferentially catalyzed NNK methyl hydroxylation, while P450 2A4 preferentially catalyzed methylene hydroxylation. The KM and Vmax for the former were 1.5 microM and 4.0 nmol/min/nmol P450, respectively, and for the latter 3.9 mM and 190 nmol/min/nmol P450. The mouse coumarin 7-hydroxylase, P450 2A5 is a significantly better catalyst of NNK alpha-hydroxylation than is the closely related human enzyme, P450 2A6.


Assuntos
Hidrocarboneto de Aril Hidroxilases , Sistema Enzimático do Citocromo P-450/metabolismo , Oxigenases de Função Mista/metabolismo , Nitrosaminas/metabolismo , Esteroide Hidroxilases/metabolismo , Animais , Citocromo P-450 CYP2A6 , Sistema Enzimático do Citocromo P-450/genética , Hidroxilação , Cinética , Camundongos , Microssomos/metabolismo , Oxigenases de Função Mista/genética , Spodoptera/genética , Esteroide Hidroxilases/genética , Especificidade por Substrato , Transfecção
5.
Biochem Pharmacol ; 55(4): 465-74, 1998 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-9514081

RESUMO

In some cases, acquired as well as constitutive tumor cell resistance to a group of otherwise clinically useful antineoplastic agents collectively referred to as oxazaphosphorines, e.g. cyclophosphamide and mafosfamide, can be accounted for by relatively elevated cellular levels of an enzyme, viz. cytosolic class 3 aldehyde dehydrogenase (ALDH-3), that catalyzes their detoxification. Ergo, inhibitors of ALDH-3 could be of clinical value since their inclusion in the therapeutic protocol would be expected to sensitize such cells to these agents. Identified in the present investigation were two chlorpropamide analogues showing promise in that regard, viz. (acetyloxy)[(4-chlorophenyl)sulfonyl]carbamic acid 1,1-dimethylethyl ester (NPI-2) and 4-chloro-N-methoxy-N-[(propylamino)carbonyl]benzenesulfonamide (API-2). Each inhibited NAD-linked benzaldehyde oxidation catalyzed by ALDH-3s purified from human breast adenocarcinoma MCF-7/0/CAT cells (IC50 values were 16 and 0.75 microM, respectively) and human normal stomach mucosa (IC50 values were 202 and 5 microM, respectively). The differential sensitivities of stomach mucosa ALDH-3 and breast tumor ALDH-3 to each of the two inhibitors can be viewed as further evidence that the latter is a subtle variant of the former. Human class 1 (ALDH-1) and class 2 (ALDH-2) aldehyde dehydrogenases were much less sensitive to NPI-2; IC50 values were >300 microM in each case. API-2, however, did not exhibit a similar degree of specificity; IC50 values for ALDH-1 and ALDH-2 were 7.5 and 0.08 microM, respectively. Each sensitized MCF-7/0/CAT cells to mafosfamide; the LC90 value decreased from >2 mM to 175 and 200 microM, respectively. Thus, the therapeutic potential of combining NPI-2 or API-2 with oxazaphosphorines is established.


Assuntos
Aldeído Desidrogenase/antagonistas & inibidores , Carbamatos/farmacologia , Clorpropamida/análogos & derivados , Inibidores Enzimáticos/farmacologia , Sulfonamidas/farmacologia , Aldeído Desidrogenase/classificação , Aldeído Desidrogenase/metabolismo , Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/enzimologia , Clorpropamida/farmacologia , Ciclofosfamida/análogos & derivados , Ciclofosfamida/farmacologia , Resistência a Medicamentos , Feminino , Mucosa Gástrica/enzimologia , Humanos , Técnicas In Vitro , Cinética , Células Tumorais Cultivadas
6.
Cancer Chemother Pharmacol ; 40(3): 215-24, 1997.
Artigo em Inglês | MEDLINE | ID: mdl-9219504

RESUMO

BACKGROUND: Determinants of cellular sensitivity to anticancer drugs include enzymes that catalyze their biotransformation. Coordinated induction of some of these enzymes is known to be caused by a number of dietary constituents, environmental contaminants, pharmacological agents and other xenobiotics, e.g. 3-methylcholanthrene and catechol. Despite the potential for inducing simultaneous changes in tumor cell sensitivity to a wide range of drugs, scant attention has been paid to the impact that dietary constituents and other xenobiotics might have on the therapeutic outcome of cancer chemotherapy. PURPOSE: The aim of this investigation was to demonstrate the potential of xenobiotic-induced multienzyme-mediated stable and transient multidrug resistance/collateral sensitivity in a model system. METHODS: Human breast adenocarcinoma MCF-7/0 cells and a stably oxazaphosphorine-resistant subline thereof, MCF-7/OAP, were grown in the presence of 3-methylcholanthrene (3 microM), catechol (30 microM), or vehicle for 5 days. Spectrophotometric and spectrofluorometric assays were used to quantify catalytic activities and thus cellular levels of cytosolic class 3 aldehyde dehydrogenase, glutathione S-transferase, DT-diaphorase, UDP-glucuronosyl transferase and cytochrome P450 1A1. A colony-forming assay was used to quantify cellular sensitivities to several anticancer drugs. RESULTS: Relative to their untreated counterparts, MCF-7/0 and MCF-7/OAP cells treated with 3-methylcholanthrene or catechol transiently expressed elevated levels of cytosolic class 3 aldehyde dehydrogenase, glutathione S-transferase, DT-diaphorase and UDP-glucuronosyl transferase, and were transiently, more resistant to mafosfamide, melphalan, and mitoxantrone, and more sensitive to EO9. Further, MCF-7/0 and MCF-7/OAP cells treated with 3-methylcholanthrene, but not those treated with catechol, transiently expressed elevated levels of cytochrome P450 1A1 and were transiently more sensitive to ellipticine. Relative to MCF-7/0 cells, MCF-7/OAP cells stably overexpressed all but cytochrome P450 1A1 and were stably, more resistant to mafosfamide, melphalan and mitoxantrone, and more sensitive to EO9. Inclusion of relatively specific inhibitors of, or alternative substrates for, the enzymes of interest during drug exposure negated the influence of enzyme overexpression on cellular sensitivities to these agents. Untreated, and 3-methylcholanthrene- or catechol-treated, MCF-7/0 and MCF-7/OAP cells were equisensitive to vincristine and nearly so to doxorubicin. CONCLUSIONS: Collectively, these experiments illustrate the potential for both stable and transient xenobiotic-induced multienzyme-mediated multidrug resistance/collateral sensitivity that, although also the result of a single event, is mechanistically different from, and pertains to a largely different group of anticancer agents than does, the multidrug resistance caused by cell surface multidrug transporters.


Assuntos
Adenocarcinoma/enzimologia , Antineoplásicos/farmacologia , Neoplasias da Mama/enzimologia , Carcinógenos/farmacologia , Catecóis/farmacologia , Resistência a Múltiplos Medicamentos , Metilcolantreno/farmacologia , Xenobióticos/farmacologia , Adenocarcinoma/tratamento farmacológico , Aldeído Desidrogenase/metabolismo , Neoplasias da Mama/tratamento farmacológico , Citocromo P-450 CYP1A1/metabolismo , Indução Enzimática , Feminino , Glucuronosiltransferase/metabolismo , Glutationa Transferase/metabolismo , Humanos , NAD(P)H Desidrogenase (Quinona)/metabolismo , Especificidade por Substrato , Células Tumorais Cultivadas
8.
Biochem Pharmacol ; 49(5): 669-75, 1995 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-7887982

RESUMO

High-level cytosolic class-3 aldehyde dehydrogenase (ALDH-3)-mediated oxazaphosphorine-specific resistance (> 35-fold as judged by the concentrations of mafosfamide required to effect a 90% cell-kill) was induced in cultured human breast adenocarcinoma MCF-7/0 cells by growing them in the presence of 30 microM catechol for 5 days. Resistance was transient in that cellular sensitivity to mafosfamide was fully restored after only a few days when the inducing agent was removed from the culture medium. The operative enzyme was identified as a type-1 ALDH-3. Cellular levels of glutathione S-transferase and DT-diaphorase activities, but not of cytochrome P450 IA1 activity, were also elevated. Other phenolic antioxidants, e.g. hydroquinone and 2,6-di-tert-butyl-4-hydroxytoluene, also induced ALDH-3 activity when MCF-7/0 cells were cultured in their presence. Thus, the increased expression of a type-1 ALDH-3 and the other enzymes induced by these agents was most probably the result of transcriptional activation of the relevant genes via antioxidant responsive elements present in their 5'-flanking regions. Cellular levels of ALDH-3 activity were also increased when a number of other human tumor cell lines, e.g. breast adenocarcinoma MDA-MB-231, breast carcinoma T-47D and colon carcinoma HCT 116b, were cultured in the presence of catechol. These findings should be viewed as greatly expanding the number of recognized environmental and dietary agents that can potentially negatively influence the sensitivity of tumor cells to cyclophosphamide and other oxazaphosphorines.


Assuntos
Aldeído Desidrogenase/biossíntese , Aldeído Desidrogenase/genética , Catecóis/farmacologia , Ciclofosfamida/farmacologia , Sequência de Bases , Ciclofosfamida/análogos & derivados , Resistência a Medicamentos , Indução Enzimática , Glutationa Transferase/biossíntese , Humanos , Dados de Sequência Molecular , NAD(P)H Desidrogenase (Quinona)/biossíntese , Células Tumorais Cultivadas/efeitos dos fármacos
10.
Biochem Pharmacol ; 48(10): 1943-52, 1994 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-7986206

RESUMO

A cultured human colon carcinoma cell line, viz. colon C, exhibiting intrinsic cellular resistance to mafosfamide mediated by relatively elevated levels of a cytosolic class-3 aldehyde dehydrogenase was identified. Colon C cells were found to be much less sensitive/more resistant (about 10-fold as judged by LC90 values) to mafosfamide than were two other cultured human colon carcinoma cell lines, viz. RCA and HCT 116b, and, as compared to the barely detectable aldehyde dehydrogenase activity (NADP-dependent enzyme-catalyzed oxidation of benzaldehyde to benzoic acid) in RCA and HCT 116b cells, that in colon C cells was about 200-fold greater. The three cell lines were equisensitive to phosphoramide mustard. Aldehyde dehydrogenase activity was confined to the cytosol in colon C cells (as well as in the other two cell lines) and, on the basis of its physical, immunological and catalytic characteristics, the operative enzyme was judged to be a Type-1 ALDH-3 identical to the Type-1 ALDH-3 expressed in methylcholanthrene-treated human breast adenocarcinoma MCF-7/0 cells and very nearly identical to the Type-1 ALDH-3 expressed in human normal stomach mucosa. Class-1 and class-2 aldehyde dehydrogenases were not found in these cells. The relative insensitivity to mafosfamide on the part of colon C cells was not observed when exposure to mafosfamide was in the presence of benzaldehyde or 4-(diethylamino)benzaldehyde, each a relatively good substrate for ALDH-3, whereas it was retained when exposure to mafosfamide was in the presence of acetaldehyde, a relatively poor substrate for this enzyme. Sensitivity to mafosfamide on the part of HCT 116b and RCA cells, and to phosphoramide mustard on the part of all three cell lines, was unaffected when drug exposure was in the presence of any of the three aldehydes. Together with earlier reports from our laboratory, these observations demonstrate that intrinsic, as well as stable and transient acquired, resistance to oxazaphosphorines, such as mafosfamide and cyclophosphamide, can be mediated by relatively increased levels of cytosolic class-3 aldehyde dehydrogenases.


Assuntos
Aldeído Desidrogenase/metabolismo , Neoplasias do Colo/enzimologia , Ciclofosfamida/análogos & derivados , Ciclofosfamida/farmacologia , Mostardas de Fosforamida/farmacologia , Aldeído Desidrogenase/isolamento & purificação , Hidrato de Cloral/farmacologia , Cloromercurobenzoatos/farmacologia , Neoplasias do Colo/patologia , Dissulfiram/farmacologia , Eletroforese em Gel de Poliacrilamida , Humanos , Focalização Isoelétrica , Células Tumorais Cultivadas , Ácido p-Cloromercurobenzoico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...