Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 284
Filtrar
1.
Nat Commun ; 15(1): 3681, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38693155

RESUMO

Defining genetic factors impacting chemotherapy failure can help to better predict response and identify drug resistance mechanisms. However, there is limited understanding of the contribution of inherited noncoding genetic variation on inter-individual differences in chemotherapy response in childhood acute lymphoblastic leukemia (ALL). Here we map inherited noncoding variants associated with treatment outcome and/or chemotherapeutic drug resistance to ALL cis-regulatory elements and investigate their gene regulatory potential and target gene connectivity using massively parallel reporter assays and three-dimensional chromatin looping assays, respectively. We identify 54 variants with transcriptional effects and high-confidence gene connectivity. Additionally, functional interrogation of the top variant, rs1247117, reveals changes in chromatin accessibility, PU.1 binding affinity and gene expression, and deletion of the genomic interval containing rs1247117 sensitizes cells to vincristine. Together, these data demonstrate that noncoding regulatory variants associated with diverse pharmacological traits harbor significant effects on allele-specific transcriptional activity and impact sensitivity to antileukemic agents.


Assuntos
Farmacogenética , Leucemia-Linfoma Linfoblástico de Células Precursoras , Proteínas Proto-Oncogênicas , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Criança , Resistencia a Medicamentos Antineoplásicos/genética , Variação Genética , Linhagem Celular Tumoral , Vincristina/uso terapêutico , Vincristina/farmacologia , Polimorfismo de Nucleotídeo Único , Alelos , Cromatina/metabolismo , Cromatina/genética , Transativadores/genética , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos
2.
Cancer Chemother Pharmacol ; 93(6): 617-625, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38416167

RESUMO

PURPOSE: The intraventricular route of chemotherapy administration, via an Ommaya Reservoir (OmR) improves drug distribution in the central nervous system (CNS) compared to the more commonly used intrathecal administration. We retrospectively reviewed our experience with intraventricular chemotherapy, focused on methotrexate, in patients with Acute Lymphoblastic Leukemia (ALL) and Non-Hodgkin Lymphoma (NHL). METHODS: Twenty-four patients (aged 7 days - 22.2 years) with 26 OmR placements were identified for a total of 25,009 OmR days between 1990 and 2019. Methotrexate cerebrospinal fluid (CSF) concentrations (n = 124) were analyzed from 59 courses of OmR therapy in 15 patients. Twenty-one courses involved methotrexate dosing on day 0 only, whereas 38 courses involved booster dosing on days 1, 2, or both. We simulated the time CSF methotrexate concentrations remained > 1 µM for 3 days given various dosing regimens. RESULTS: CSF methotrexate exposure was higher in those who concurrently received systemic methotrexate than via OmR alone (p < 10- 7). Our simulations showed that current intraventricular methotrexate boosting strategy for patients ≥ 3 years of age maintained CSF methotrexate concentrations ≥ 1 µM for 72 h 40% of the time. Alternatively, other boosting strategies were predicted to achieve CSF methotrexate concentrations ≥ 1 µM for 72 h between 46 and 72% of the time. CONCLUSIONS: OmR were able to be safely placed and administer intraventricular methotrexate with and without boost doses in patients from 7 days to 22 years old. Boosting strategies are predicted to increase CSF methotrexate concentrations ≥ 1 µM for 72 h.


Assuntos
Antimetabólitos Antineoplásicos , Linfoma não Hodgkin , Metotrexato , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Criança , Pré-Escolar , Metotrexato/administração & dosagem , Lactente , Adolescente , Estudos Retrospectivos , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Masculino , Linfoma não Hodgkin/tratamento farmacológico , Feminino , Adulto Jovem , Recém-Nascido , Antimetabólitos Antineoplásicos/administração & dosagem , Hospitais Pediátricos , Injeções Intraventriculares
3.
J Natl Cancer Inst ; 116(5): 702-710, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38230823

RESUMO

BACKGROUND: Thiopurines such as mercaptopurine (MP) are widely used to treat acute lymphoblastic leukemia (ALL). Thiopurine-S-methyltransferase (TPMT) and Nudix hydrolase 15 (NUDT15) inactivate thiopurines, and no-function variants are associated with drug-induced myelosuppression. Dose adjustment of MP is strongly recommended in patients with intermediate or complete loss of activity of TPMT and NUDT15. However, the extent of dosage reduction recommended for patients with intermediate activity in both enzymes is currently not clear. METHODS: MP dosages during maintenance were collected from 1768 patients with ALL in Singapore, Guatemala, India, and North America. Patients were genotyped for TPMT and NUDT15, and actionable variants defined by the Clinical Pharmacogenetics Implementation Consortium were used to classify patients as TPMT and NUDT15 normal metabolizers (TPMT/NUDT15 NM), TPMT or NUDT15 intermediate metabolizers (TPMT IM or NUDT15 IM), or TPMT and NUDT15 compound intermediate metabolizers (TPMT/NUDT15 IM/IM). In parallel, we evaluated MP toxicity, metabolism, and dose adjustment using a Tpmt/Nudt15 combined heterozygous mouse model (Tpmt+/-/Nudt15+/-). RESULTS: Twenty-two patients (1.2%) were TPMT/NUDT15 IM/IM in the cohort, with the majority self-reported as Hispanics (68.2%, 15/22). TPMT/NUDT15 IM/IM patients tolerated a median daily MP dose of 25.7 mg/m2 (interquartile range = 19.0-31.1 mg/m2), significantly lower than TPMT IM and NUDT15 IM dosage (P < .001). Similarly, Tpmt+/-/Nudt15+/- mice displayed excessive hematopoietic toxicity and accumulated more metabolite (DNA-TG) than wild-type or single heterozygous mice, which was effectively mitigated by a genotype-guided dose titration of MP. CONCLUSION: We recommend more substantial dose reductions to individualize MP therapy and mitigate toxicity in TPMT/NUDT15 IM/IM patients.


Assuntos
Mercaptopurina , Metiltransferases , Leucemia-Linfoma Linfoblástico de Células Precursoras , Pirofosfatases , Adolescente , Animais , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Camundongos , Antimetabólitos Antineoplásicos/efeitos adversos , Antimetabólitos Antineoplásicos/administração & dosagem , Genótipo , Mercaptopurina/toxicidade , Metiltransferases/genética , Metiltransferases/metabolismo , Nudix Hidrolases , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Pirofosfatases/genética , Pirofosfatases/metabolismo
4.
Haematologica ; 109(1): 53-59, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37408475

RESUMO

Venous thrombosis is a common adverse effect of modern therapy for acute lymphoblastic leukemia (ALL). Prior studies to identify risks of thrombosis in pediatric ALL have been limited by genetic screens of pre-identified genetic variants or genome- wide association studies (GWAS) in ancestrally uniform populations. To address this, we performed a retrospective cohort evaluation of thrombosis risk in 1,005 children treated for newly diagnosed ALL. Genetic risk factors were comprehensively evaluated from genome-wide single nucleotide polymorphism (SNP) arrays and were evaluated using Cox regression adjusting for identified clinical risk factors and genetic ancestry. The cumulative incidence of thrombosis was 7.8%. In multivariate analysis, older age, T-lineage ALL, and non-O blood group were associated with increased thrombosis while non-low-risk treatment and higher presenting white blood cell count trended toward increased thrombosis. No SNP reached genome-wide significance. The SNP most strongly associated with thrombosis was rs2874964 near RFXAP (G risk allele; P=4x10-7; hazard ratio [HR] =2.8). In patients of non-European ancestry, rs55689276 near the α globin cluster (P=1.28x10-6; HR=27) was most strongly associated with thrombosis. Among GWAS catalogue SNP reported to be associated with thrombosis, rs2519093 (T risk allele, P=4.8x10-4; HR=2.1), an intronic variant in ABO, was most strongly associated with risk in this cohort. Classic thrombophilia risks were not associated with thrombosis. Our study confirms known clinical risk features associated with thrombosis risk in children with ALL. In this ancestrally diverse cohort, genetic risks linked to thrombosis risk aggregated in erythrocyte-related SNP, suggesting the critical role of this tissue in thrombosis risk.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras , Trombose Venosa , Criança , Humanos , Estudos Retrospectivos , Fatores de Risco , Estudo de Associação Genômica Ampla , Leucemia-Linfoma Linfoblástico de Células Precursoras/complicações , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Trombose Venosa/genética , Genômica , Polimorfismo de Nucleotídeo Único , Predisposição Genética para Doença
5.
Genet Med ; 26(2): 101033, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38007624

RESUMO

This white paper was prepared by the Global Alliance for Genomics and Health Regulatory and Ethics Work Stream's Pediatric Task Team to review and provide perspective with respect to ethical, legal, and social issues regarding the return of secondary pharmacogenomic variants in children who have a serious disease or developmental disorder and are undergoing exome or genome sequencing to identify a genetic cause of their condition. We discuss actively searching for and reporting pharmacogenetic/genomic variants in pediatric patients, different methods of returning secondary pharmacogenomic findings to the patient/parents and/or treating clinicians, maintaining these data in the patient's health record over time, decision supports to assist using pharmacogenetic results in future treatment decisions, and sharing information in public databases to improve the clinical interpretation of pharmacogenetic variants identified in other children. We conclude by presenting a series of points to consider for clinicians and policymakers regarding whether, and under what circumstances, routine screening and return of pharmacogenomic variants unrelated to the indications for testing is appropriate in children who are undergoing genome-wide sequencing to assist in the diagnosis of a suspected genetic disease.


Assuntos
Farmacogenética , Variantes Farmacogenômicos , Humanos , Criança , Genômica , Mapeamento Cromossômico , Exoma
6.
Cell Genom ; 3(12): 100442, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38116118

RESUMO

B cell lineage acute lymphoblastic leukemia (B-ALL) is composed of diverse molecular subtypes, and while transcriptional and DNA methylation profiling has been extensively examined, the chromatin landscape is not well characterized for many subtypes. We therefore mapped chromatin accessibility using ATAC-seq in primary B-ALL cells from 156 patients spanning ten molecular subtypes and present this dataset as a resource. Differential chromatin accessibility and transcription factor (TF) footprint profiling were employed and identified B-ALL cell of origin, TF-target gene interactions enriched in B-ALL, and key TFs associated with accessible chromatin sites preferentially active in B-ALL. We further identified over 20% of accessible chromatin sites exhibiting strong subtype enrichment and candidate TFs that maintain subtype-specific chromatin architectures. Over 9,000 genetic variants were uncovered, contributing to variability in chromatin accessibility among patient samples. Our data suggest that distinct chromatin architectures are driven by diverse TFs and inherited genetic variants that promote unique gene-regulatory networks.

7.
J Clin Oncol ; 41(35): 5422-5432, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-37729596

RESUMO

PURPOSE: High hyperdiploidy, the largest and favorable subtype of childhood ALL, exhibits significant biological and prognostic heterogeneity. However, factors contributing to the varied treatment response and the optimal definition of hyperdiploidy remain uncertain. METHODS: We analyzed outcomes of patients treated on two consecutive frontline ALL protocols, using six different definitions of hyperdiploidy: chromosome number 51-67 (Chr51-67); DNA index (DI; DI1.16-1.6); United Kingdom ALL study group low-risk hyperdiploid, either trisomy of chromosomes 17 and 18 or +17 or +18 in the absence of +5 and +20; single trisomy of chromosome 18; double trisomy of chromosomes 4 and 10; and triple trisomy (TT) of chromosomes 4, 10, and 17. Additionally, we characterized ALL ex vivo pharmacotypes across eight main cytotoxic drugs. RESULTS: Among 1,096 patients analyzed, 915 had B-ALL and 634 had pharmacotyping performed. In univariate analysis, TT emerged as the most favorable criterion for event-free survival (EFS; 10-year EFS, 97.3% v 86.8%; P = .0003) and cumulative incidence of relapse (CIR; 10-year CIR, 1.4% v 8.8%; P = .002) compared with the remaining B-ALL. In multivariable analysis, accounting for patient numbers using the akaike information criterion (AIC), DI1.16-1.6 was the most favorable criterion, exhibiting the best AIC for both EFS (hazard ratio [HR], 0.45; 95% CI, 0.23 to 0.88) and CIR (HR, 0.45; 95% CI, 0.21 to 0.99). Hyperdiploidy and subgroups with favorable prognoses exhibited notable sensitivities to asparaginase and mercaptopurine. Specifically, asparaginase sensitivity was associated with trisomy of chromosomes 16 and 17, whereas mercaptopurine sensitivity was linked to gains of chromosomes 14 and 17. CONCLUSION: Among different definitions of hyperdiploid ALL, DI is optimal based on independent prognostic impact and also the large proportion of low-risk patients identified. Hyperdiploid ALL exhibited particular sensitivities to asparaginase and mercaptopurine, with chromosome-specific associations.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras , Trissomia , Humanos , Prognóstico , Trissomia/genética , Mercaptopurina , Asparaginase/uso terapêutico , Recidiva Local de Neoplasia , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico
8.
Leukemia ; 37(9): 1782-1791, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37543655

RESUMO

Polyethylene glycol (PEG)-asparaginase (pegaspargase) is a key agent in chemotherapy for acute lymphoblastic leukemia (ALL), but recipients frequently experience allergic reactions. We hypothesized that by decreasing antibody-producing CD20-positive B cells, rituximab may reduce these reactions. Children and adolescents (aged 1-18 years) with newly diagnosed B-ALL treated on the St. Jude Total XVII study were randomized to induction therapy with or without rituximab on day 3 (cohort 1) or on days 6 and 24 (cohort 2). Patient clinical demographics, CD20 expression, minimal residual disease (MRD), rituximab reactions, pegaspargase allergy, anti-pegaspargase antibodies, and pancreatitis were evaluated. Thirty-five patients received rituximab and 37 did not. Among the 35 recipients, 16 (45.7%) experienced a grade 2 or higher reaction to rituximab. There were no differences between recipients and non-recipients in the incidence of pegaspargase reactions (P > 0.999), anti-pegaspargase antibodies (P = 0.327), or pancreatitis (P = 0.480). CD20 expression on day 8 was significantly lower in rituximab recipients (P < 0.001), but there were no differences in MRD levels on day 8, 15, or at the end of induction. Rituximab administration during induction in pediatric patients with B-ALL was associated with a high incidence of infusion reactions with no significant decrease in pegaspargase allergies, anti-pegaspargase antibodies, or MRD.


Assuntos
Antineoplásicos , Pancreatite , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Leucemia-Linfoma Linfoblástico de Células Precursoras , Adolescente , Criança , Humanos , Rituximab/uso terapêutico , Asparaginase/uso terapêutico , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/epidemiologia , Polietilenoglicóis , Pancreatite/induzido quimicamente , Pancreatite/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/tratamento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Antineoplásicos/uso terapêutico
9.
Bio Protoc ; 13(15): e4731, 2023 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-37575398

RESUMO

Resistance of acute lymphoblastic leukemia (ALL) cells to chemotherapy, whether present at diagnosis or acquired during treatment, is a major cause of treatment failure. Primary ALL cells are accessible for drug sensitivity testing at the time of new diagnosis or at relapse, but there are major limitations with current methods for determining drug sensitivity ex vivo. Here, we describe a functional precision medicine method using a fluorescence imaging platform to test drug sensitivity profiles of primary ALL cells. Leukemia cells are co-cultured with mesenchymal stromal cells and tested with a panel of 40 anti-leukemia drugs to determine individual patterns of drug resistance and sensitivity ("pharmacotype"). This imaging-based pharmacotyping assay addresses the limitations of prior ex vivo drug sensitivity methods by automating data analysis to produce high-throughput data while requiring fewer cells and significantly decreasing the labor-intensive time required to conduct the assay. The integration of drug sensitivity data with genomic profiling provides a basis for rational genomics-guided precision medicine. Key features Analysis of primary acute lymphoblastic leukemia (ALL) blasts obtained at diagnosis from bone marrow aspirate or peripheral blood. Experiments are performed ex vivo with mesenchymal stromal cell co-culture and require four days to complete. This fluorescence imaging-based protocol enhances previous ex vivo drug sensitivity assays and improves efficiency by requiring fewer primary cells while increasing the number of drugs tested to 40. It takes approximately 2-3 h for sample preparation and processing and a 1.5-hour imaging time. Graphical overview.

12.
bioRxiv ; 2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-36824825

RESUMO

B-cell lineage acute lymphoblastic leukemia (B-ALL) is comprised of diverse molecular subtypes and while transcriptional and DNA methylation profiling of B-ALL subtypes has been extensively examined, the accompanying chromatin landscape is not well characterized for many subtypes. We therefore mapped chromatin accessibility using ATAC-seq for 10 B-ALL molecular subtypes in primary ALL cells from 154 patients. Comparisons with B-cell progenitors identified candidate B-ALL cell-of-origin and AP-1-associated cis-regulatory rewiring in B-ALL. Cis-regulatory rewiring promoted B-ALL-specific gene regulatory networks impacting oncogenic signaling pathways that perturb normal B-cell development. We also identified that over 20% of B-ALL accessible chromatin sites exhibit strong subtype enrichment, with transcription factor (TF) footprint profiling identifying candidate TFs that maintain subtype-specific chromatin architectures. Over 9000 inherited genetic variants were further uncovered that contribute to variability in chromatin accessibility among individual patient samples. Overall, our data suggest that distinct chromatin architectures are driven by diverse TFs and inherited genetic variants which promote unique gene regulatory networks that contribute to transcriptional differences among B-ALL subtypes.

14.
medRxiv ; 2023 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-36798219

RESUMO

Although acute lymphoblastic leukemia (ALL) is the most common childhood cancer, there is limited understanding of the contribution of inherited genetic variation on inter-individual differences in chemotherapy response. Defining genetic factors impacting therapy failure can help better predict response and identify drug resistance mechanisms. We therefore mapped inherited noncoding variants associated with chemotherapeutic drug resistance and/or treatment outcome to ALL cis-regulatory elements and investigated their gene regulatory potential and genomic connectivity using massively parallel reporter assays and promoter capture Hi-C, respectively. We identified 53 variants with reproducible allele-specific effects on transcription and high-confidence gene targets. Subsequent functional interrogation of the top variant (rs1247117) determined that it disrupted a PU.1 consensus motif and PU.1 binding affinity. Importantly, deletion of the genomic interval containing rs1247117 sensitized ALL cells to vincristine. Together, these data demonstrate that noncoding regulatory variation associated with diverse pharmacological traits harbor significant effects on allele-specific transcriptional activity and impact sensitivity to chemotherapeutic agents in ALL.

15.
Nat Med ; 29(1): 170-179, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36604538

RESUMO

Contemporary chemotherapy for childhood acute lymphoblastic leukemia (ALL) is risk-adapted based on clinical features, leukemia genomics and minimal residual disease (MRD); however, the pharmacological basis of these prognostic variables remains unclear. Analyzing samples from 805 children with newly diagnosed ALL from three consecutive clinical trials, we determined the ex vivo sensitivity of primary leukemia cells to 18 therapeutic agents across 23 molecular subtypes defined by leukemia genomics. There was wide variability in drug response, with favorable ALL subtypes exhibiting the greatest sensitivity to L-asparaginase and glucocorticoids. Leukemia sensitivity to these two agents was highly associated with MRD although with distinct patterns and only in B cell ALL. We identified six patient clusters based on ALL pharmacotypes, which were associated with event-free survival, even after adjusting for MRD. Pharmacotyping identified a T cell ALL subset with a poor prognosis that was sensitive to targeted agents, pointing to alternative therapeutic strategies. Our study comprehensively described the pharmacological heterogeneity of ALL, highlighting opportunities for further individualizing therapy for this most common childhood cancer.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Leucemia-Linfoma Linfoblástico de Células Precursoras , Criança , Humanos , Resultado do Tratamento , Intervalo Livre de Doença , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Genômica , Neoplasia Residual/tratamento farmacológico , Neoplasia Residual/genética
16.
Clin Pharmacol Ther ; 113(5): 973-985, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36049896

RESUMO

Glucose-6-phosphate dehydrogenase (G6PD) deficiency is associated with development of acute hemolytic anemia in the setting of oxidative stress, which can be caused by medication exposure. Regulatory agencies worldwide warn against the use of certain medications in persons with G6PD deficiency, but in many cases, this information is conflicting, and the clinical evidence is sparse. This guideline provides information on using G6PD genotype as part of the diagnosis of G6PD deficiency and classifies medications that have been previously implicated as unsafe in individuals with G6PD deficiency by one or more sources. We classify these medications as high, medium, or low to no risk based on a systematic review of the published evidence of the gene-drug associations and regulatory warnings. In patients with G6PD deficiency, high-risk medications should be avoided, medium-risk medications should be used with caution, and low-to-no risk medications can be used with standard precautions, without regard to G6PD phenotype. This new document replaces the prior Clinical Pharmacogenetics Implementation Consortium guideline for rasburicase therapy in the context of G6PD genotype (updates at: www.cpicpgx.org).


Assuntos
Deficiência de Glucosefosfato Desidrogenase , Glucosefosfato Desidrogenase , Humanos , Glucosefosfato Desidrogenase/genética , Glucosefosfato Desidrogenase/uso terapêutico , Deficiência de Glucosefosfato Desidrogenase/tratamento farmacológico , Deficiência de Glucosefosfato Desidrogenase/genética , Deficiência de Glucosefosfato Desidrogenase/diagnóstico , Farmacogenética , Hemólise , Genótipo
18.
JAMA Netw Open ; 5(12): e2248803, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36580335

RESUMO

Importance: Acute lymphoblastic leukemia (ALL) is the most common childhood cancer. Hepatotoxic effects, including hyperbilirubinemia and elevated alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels, are common during all phases of therapy and are linked to several chemotherapeutic agents, including asparaginase, mercaptopurine, and methotrexate. Objective: To determine which genetic variants were associated with hyperbilirubinemia and elevated ALT and AST levels in children, adolescents, and young adults treated for ALL. Design, Setting, and Participants: This retrospective analysis of a multiethnic genome-wide association study was conducted between January 1, 2019, and April 15, 2022, including patients treated as part of Children's Oncology Group (COG) trials with centers in the United States, Canada, and Australia, which accrued data from December 29, 2003, to January 21, 2011 (AALL0232), and from January 22, 2007, to July 24, 2014 (AALL0434). Germline genotypes were interrogated using genome-wide arrays and imputed using a National Institutes of Health TOPMed Imputation server. Mixed-effects logistic regressions were used to account for multiple episodes for an individual patient. Genotype × treatment phase interaction was tested to uncover phase-specific genetic risk factors. Exposures: Total duration of multiagent protocol chemotherapy ranging from 2.5 to 3.5 years. Main Outcomes and Measures: The primary outcomes were National Cancer Institute Common Terminology Criteria for Adverse Events (version 4) hyperbilirubinemia of grade 3 or higher and elevated liver ALT and AST levels. Results: A total of 3557 participants were included in the analysis (2179 [61.3%] male; median age, 11.1 [range, 1-30] years). Among 576 known variants associated with these liver function test results in the general population, UGT1A1 variant rs887829 and PNPLA3 variant rs738409 were associated with increased risk of hyperbilirubinemia (odds ratio [OR], 2.18 [95% CI, 1.89-2.53]; P = 6.7 × 10-27) and ALT and AST levels (OR, 1.27 [95% CI, 1.15-1.40]; P = 3.7 × 10-7), respectively, during treatment for ALL. Corresponding polygenic risk scores were associated with hepatotoxic effects across all therapy phases and were largely driven by UGT1A1 and PNPLA3 variants. Genome-wide association analysis revealed an age-specific variant near the CPT1A gene that was only associated with elevated ALT and AST levels among patients younger than 10 years (OR, 1.28 [95% CI, 1.18-1.39]; P = 8.7 × 10-10). Conclusions and Relevance: These results suggest a strong genetic basis for interpatient variability in hyperbilirubinemia and aminotransferase level elevations during leukemia chemotherapy.


Assuntos
Estudo de Associação Genômica Ampla , Leucemia-Linfoma Linfoblástico de Células Precursoras , Adulto Jovem , Adolescente , Humanos , Masculino , Criança , Estados Unidos , Feminino , Estudos Retrospectivos , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Fígado , Hiperbilirrubinemia/induzido quimicamente , Hiperbilirrubinemia/genética
19.
J Am Med Inform Assoc ; 30(1): 132-138, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36228116

RESUMO

Thoughtful integration of interruptive clinical decision support (CDS) alerts within the electronic health record is essential to guide clinicians on the application of pharmacogenomic results at point of care. St. Jude Children's Research Hospital implemented a preemptive pharmacogenomic testing program in 2011 in a multidisciplinary effort involving extensive education to clinicians about pharmacogenomic implications. We conducted a retrospective analysis of clinicians' adherence to 4783 pharmacogenomically guided CDS alerts that triggered for 12 genes and 60 drugs. Clinicians adhered to the therapeutic recommendations provided in 4392 alerts (92%). In our population of pediatric patients with catastrophic illnesses, the most frequently presented gene/drug CDS alerts were TPMT/NUDT15 and thiopurines (n = 3850), CYP2D6 and ondansetron (n = 667), CYP2D6 and oxycodone (n = 99), G6PD and G6PD high-risk medications (n = 51), and CYP2C19 and proton pump inhibitors (omeprazole and pantoprazole; n = 50). The high adherence rate was facilitated by our team approach to prescribing and our collaborative CDS design and delivery.


Assuntos
Sistemas de Apoio a Decisões Clínicas , Humanos , Criança , Farmacogenética/métodos , Citocromo P-450 CYP2D6/genética , Estudos Retrospectivos , Registros Eletrônicos de Saúde
20.
Leukemia ; 36(10): 2374-2383, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36028659

RESUMO

Glucocorticoids (GCs) are a mainstay of contemporary, multidrug chemotherapy in the treatment of childhood acute lymphoblastic leukemia (ALL), and resistance to GCs remains a major clinical concern. Resistance to GCs is predictive of ALL relapse and poor clinical outcome, and therefore represents a major hurdle limiting further improvements in survival rates. While advances have been made in identifying genes implicated in GC resistance, there remains an insufficient understanding of the impact of cis-regulatory disruptions in resistance. To address this, we mapped the gene regulatory response to GCs in two ALL cell lines using functional genomics and high-throughput reporter assays and identified thousands of GC-responsive changes to chromatin state, including the formation of over 250 GC-responsive super-enhancers and a depletion of AP-1 bound cis-regulatory elements implicated in cell proliferation and anti-apoptotic processes. By integrating our GC response maps with genetic and epigenetic datasets in primary ALL cells from patients, we further uncovered cis-regulatory disruptions at GC-responsive genes that impact GC resistance in childhood ALL. Overall, these data indicate that GCs initiate pervasive effects on the leukemia epigenome, and that alterations to the GC gene regulatory network contribute to GC resistance.


Assuntos
Glucocorticoides , Leucemia-Linfoma Linfoblástico de Células Precursoras , Linhagem Celular Tumoral , Cromatina , Resistencia a Medicamentos Antineoplásicos/genética , Epigenômica , Glucocorticoides/farmacologia , Glucocorticoides/uso terapêutico , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Receptores de Glucocorticoides/genética , Esteroides , Fator de Transcrição AP-1/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...