Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Bio Mater ; 1(5): 1440-1447, 2018 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34996248

RESUMO

It is long known that oil-in-water emulsions can be stable against coalescence in homogenized plant cell wall dispersions because of the presence of surface-active biopolymers. When plant cell wall material is homogenized to the extent of deagglomeration of the cellulose microfibrils (CMFs), a much more complex dispersed system is obtained. Here we show that in such complex systems both surface active soluble polymers and individual CMFs are at the origin of this stabilization against coalescence, as they form a shell around the oil droplets providing Pickering-like stabilization. Individual CMFs and bundles of them in the presence of soluble biopolymers form a hybrid network in the continuous phase linking the droplets, creating a viscoelastic network that prevents the droplets from coalescing. Depletion induced attraction caused by soluble biopolymers and dispersed CMFs induces the formation of oil droplet clusters at low CMF concentrations leading to a highly heterogeneous distribution of oil droplets. This effect diminishes at high CMF concentrations at which the strong viscoelastic network arrests the droplets. These findings are important steps toward controlling complex dispersed systems comprising CMF-polymers mixtures with a second liquid or solid dispersed phase.

2.
Mol Pharm ; 13(10): 3484-3493, 2016 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-27576295

RESUMO

Intestinal fluids dictate the intraluminal environment, and therefore, they substantially affect the absorption of orally taken drugs. The characterization of human intestinal fluids (HIF) and the design of simulated intestinal fluids (SIF) mainly focus on composition, not necessarily taking into account the ultrastructure of HIF. Colloidal structures in HIF and SIF can enhance the solubilizing capacity for lipophilic drugs while decreasing the bioaccessible fraction. As such, colloids present in HIF play a crucial role and require an in-depth characterization. Therefore, the present study pursued a comprehensive characterization of the ultrastructure of fasted and fed state HIF, focusing on (i) intersubject variability in relation to composition and (ii) differences between the ultrastructure of HIF and SIF. Individual as well as pooled HIF were collected from human volunteers near the ligament of Treitz and compositionally characterized previously. A HIF population pool (20 healthy volunteers) for both fasted (FaHIF) and fed state (FeHIF) was compared to current SIF, as well as selected HIF from different individuals. The selected individual HIF represented the full spectrum of compositional characteristics. Three complementary electron microscopy techniques, cryo-TEM (transmission electron microscopy), negative stain TEM, and cryo-SEM (scanning electron microscopy), were employed to provide a comprehensive view of the colloidal structures in HIF and SIF. The use of complementary EM techniques provided a unique insight into the ultrastructure of HIF, including their native conformation. These characterizations showed that FaHIF and FaSSIF (fasted state simulated intestinal fluids) only consist of (mixed)-micelles with minimal intersubject variability. Ultrastructures in FeSSIF (fed state simulated intestinal fluids) and FeSSIF-v2 are not representative of the colloids in FeHIF since SIF lack (multi)-lamellar vesicles and lipid droplets. Furthermore, the images demonstrated significant intersubject variability in the ultrastructure of FeHIF, which may contribute to variable absorption of lipophilic drugs.


Assuntos
Líquidos Corporais/química , Coloides/química , Intestinos/química , Microscopia Crioeletrônica , Jejum , Voluntários Saudáveis , Humanos , Micelas , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Período Pós-Prandial
3.
Langmuir ; 29(47): 14356-60, 2013 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-24215548

RESUMO

We prepared dispersions from bacterial cellulose microfibrils (CMF) of a commercial Nata de Coco source. We used an ultra-high-energy mechanical deagglomeration process that is able to disperse the CMFs from the pellicle in which they are organized in an irregular network. Because of the strong attractions between the CMFs, the dispersion remained highly heterogeneous, consisting of fiber bundles, flocs, and voids spanning tens to hundreds of micrometers depending on concentration. The size of these flocs increased with CMF concentration, the size of the bundles stayed constant, and the size of the voids decreased. The observed percolation threshold in MFC dispersions is lower than the theoretical prediction, which is accounted for by the attractive interactions in the system. Because bacterial cellulose is chemically very pure, it can be used to study the interaction of attractive and highly shape-anisotropic, semiflexible fiberlike colloidal particles.


Assuntos
Bactérias/química , Celulose/química , Microfibrilas/química , Coloides/química , Tamanho da Partícula , Propriedades de Superfície
4.
Chemphyschem ; 14(2): 305-10, 2013 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-23239561

RESUMO

A new type of microcapsules with controllable morphology is presented. They are based on a low-molecular-weight gelator and can be switched from temperature-stable to temperature-responsive by simply modifying the preparation method.


Assuntos
Géis/química , Temperatura , Cápsulas , Microscopia Confocal , Microscopia de Polarização , Peso Molecular , Tamanho da Partícula , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...