Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Med Biol ; 56(23): 7601-19, 2011 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-22086216

RESUMO

Positron emitters are activated by proton beams in proton radiotherapy, and positron emission tomography (PET) images can thus be used for dose verification. Since a PET image is not directly proportional to the delivered radiation dose distribution, predicted PET images are compared to measured PET images and an agreement of both indicates a successful irradiation. Such predictions are given on the basis of Monte Carlo calculations or a filtering approach which uses a convolution of the planned dose with specific filter functions to estimate the PET activity. In this paper, we describe and evaluate a dose reconstruction method based on PET images which reverses the just mentioned convolution approach using appropriate deconvolution methods. Deconvolution is an ill-posed inverse problem, and suitable regularization techniques are required in order to guarantee a stable solution. The basic convolution approach is developed for homogeneous media and additional procedures are necessary to generalize the PET estimation to inhomogeneous media. This generalization formalism is used in our dose deconvolution approach as well. Various simulations demonstrate that the dose reconstruction method is able to reverse the PET estimation method both in homogeneous and inhomogeneous media. Measured PET images are however degraded by noise and artifacts and the dose reconstructions become more difficult and the results suffer from artifacts as well. Recently used in-room PET scanners allow a decreased delay time between irradiation and imaging, and thus the influence of short-lived positron emitters on the PET images increases considerably. We extended our dose reconstruction method to process PET images which contain several positron emitters and simulated results are shown.


Assuntos
Tomografia por Emissão de Pósitrons , Terapia com Prótons , Doses de Radiação , Radioterapia Assistida por Computador/métodos , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Neoplasias de Cabeça e Pescoço/radioterapia , Humanos , Imagens de Fantasmas , Dosagem Radioterapêutica
2.
Genome Res ; 21(11): 1955-68, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21795383

RESUMO

SRC proteins are non-receptor tyrosine kinases that play key roles in regulating signal transduction by a diverse set of cell surface receptors. They contain N-terminal SH4 domains that are modified by fatty acylation and are functioning as membrane anchors. Acylated SH4 domains are both necessary and sufficient to mediate specific targeting of SRC kinases to the inner leaflet of plasma membranes. Intracellular transport of SRC kinases to the plasma membrane depends on microdomains into which SRC kinases partition upon palmitoylation. In the present study, we established a live-cell imaging screening system to identify gene products involved in plasma membrane targeting of SRC kinases. Based on siRNA arrays and a human model cell line expressing two kinds of SH4 reporter molecules, we conducted a genome-wide analysis of SH4-dependent protein targeting using an automated microscopy platform. We identified and validated 54 gene products whose down-regulation causes intracellular retention of SH4 reporter molecules. To detect and quantify this phenotype, we developed a software-based image analysis tool. Among the identified gene products, we found factors involved in lipid metabolism, intracellular transport, and cellular signaling processes. Furthermore, we identified proteins that are either associated with SRC kinases or are related to various known functions of SRC kinases such as other kinases and phosphatases potentially involved in SRC-mediated signal transduction. Finally, we identified gene products whose function is less defined or entirely unknown. Our findings provide a major resource for future studies unraveling the molecular mechanisms that underlie proper targeting of SRC kinases to the inner leaflet of plasma membranes.


Assuntos
Membrana Celular/enzimologia , Genoma Humano , Fenótipo , Quinases da Família src/metabolismo , Linhagem Celular Tumoral , Proteína Coatomer/genética , Proteína Coatomer/metabolismo , Células HeLa , Ensaios de Triagem em Larga Escala , Homeostase , Humanos , Espaço Intracelular/metabolismo , Metabolismo dos Lipídeos , Lipoilação , Domínios e Motivos de Interação entre Proteínas , Proteína Quinase C-alfa/genética , Proteína Quinase C-alfa/metabolismo , Transporte Proteico , Proteínas Proto-Oncogênicas c-yes/metabolismo , RNA Interferente Pequeno , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Quinases da Família src/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...