Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 556(7699): 95-98, 2018 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-29620734

RESUMO

Over the past century, many of the world's major rivers have been modified for the purposes of flood mitigation, power generation and commercial navigation. Engineering modifications to the Mississippi River system have altered the river's sediment levels and channel morphology, but the influence of these modifications on flood hazard is debated. Detecting and attributing changes in river discharge is challenging because instrumental streamflow records are often too short to evaluate the range of natural hydrological variability before the establishment of flood mitigation infrastructure. Here we show that multi-decadal trends of flood hazard on the lower Mississippi River are strongly modulated by dynamical modes of climate variability, particularly the El Niño-Southern Oscillation and the Atlantic Multidecadal Oscillation, but that the artificial channelization (confinement to a straightened channel) has greatly amplified flood magnitudes over the past century. Our results, based on a multi-proxy reconstruction of flood frequency and magnitude spanning the past 500 years, reveal that the magnitude of the 100-year flood (a flood with a 1 per cent chance of being exceeded in any year) has increased by 20 per cent over those five centuries, with about 75 per cent of this increase attributed to river engineering. We conclude that the interaction of human alterations to the Mississippi River system with dynamical modes of climate variability has elevated the current flood hazard to levels that are unprecedented within the past five centuries.


Assuntos
Desastres/estatística & dados numéricos , Inundações/estatística & dados numéricos , Hidrologia/estatística & dados numéricos , Medição de Risco , Rios , Movimentos da Água , El Niño Oscilação Sul , Sedimentos Geológicos/análise , Atividades Humanas , Mississippi , Árvores/crescimento & desenvolvimento
2.
Sci Total Environ ; 572: 43-55, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27494653

RESUMO

During the latter half of the 19th Century and first half of the 20th Century, the Illinois River was heavily altered through leveeing off large portions of its floodplain, draining wetlands, and the construction of dams and river-training structures that facilitated navigation. As a result of these alterations, flood stages continue to rise, increasing flood risk and threatening to overtop levees along the La Grange Segment (LGS) of the Illinois River. Over the last two decades, more emphasis has been placed on reconnecting portions of floodplains to rivers in order to solve the long-term problem of rising flood heights attributed to continual heightening of levees to provide flood protection. Multiple studies have suggested that strategically reconnecting larger portions of the LGS could result in more sustainable floodplain management. However, the true costs and benefits of reconnecting the floodplain are not known. We use a novel hydrodynamic, geospatial, economic, and habitat suitability framework to assess the tradeoffs of strategically reconnecting the Illinois River to its floodplain in order to decrease flood risk, improve floodplain habitats, and limit the costs of reconnection. Costs include building-associated losses, lost agricultural profits, and levee removal and construction costs. Tested scenarios demonstrate that while flood heights and environmental benefits are maximized through the most aggressive levee setbacks and removals, these scenarios also have the highest costs. However, the tradeoff of implementing lower-cost scenarios is that there is less flood-height reduction and less floodplain habitat available. Several individual levee districts have high potential for reconnection based on limiting potential damages as well as providing floodplain habitat. To implement large-scale strategic floodplain reconnection, costs range from $1.2-$4.3 billion. As such, payments for ecosystem services will likely be necessary to compensate landowners for decreased long-term agricultural production and building losses that result in flood-reduction benefits and increased floodplain habitat.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...