Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain Behav Immun ; 113: 29-43, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37379963

RESUMO

A growing body of evidence suggests that immune-related genes play pivotal roles in the pathophysiology of depression. In the present study, we investigated a plausible connection between gene expression, DNA methylation, and brain structural changes in the pathophysiology of depression using a combined approach of murine and human studies. We ranked the immobility behaviors of 30 outbred Crl:CD1 (ICR) mice in the forced swim test (FST) and harvested their prefrontal cortices for RNA sequencing. Of the 24,532 analyzed genes, 141 showed significant correlations with FST immobility time, as determined through linear regression analysis with p ≤ 0.01. The identified genes were mostly involved in immune responses, especially interferon signaling pathways. Moreover, induction of virus-like neuroinflammation in the brains of two separate mouse cohorts (n = 30 each) using intracerebroventricular polyinosinic:polycytidylic acid injection resulted in increased immobility during FST and similar expression of top immobility-correlated genes. In human blood samples, candidate gene (top 5%) expression profiling using DNA methylation analysis found the interferon-related USP18 (cg25484698, p = 7.04 × 10-11, Δß = 1.57 × 10-2; cg02518889, p = 2.92 × 10-3, Δß =  - 8.20 × 10-3) and IFI44 (cg07107453, p = 3.76 × 10-3, Δß =  - 4.94 × 10-3) genes to be differentially methylated between patients with major depressive disorder (n = 350) and healthy controls (n = 161). Furthermore, cortical thickness analyses using T1-weighted images revealed that the DNA methylation scores for USP18 were negatively correlated with the thicknesses of several cortical regions, including the prefrontal cortex. Our results reveal the important role of the interferon pathway in depression and suggest USP18 as a potential candidate target. The results of the correlation analysis between transcriptomic data and animal behavior carried out in this study provide insights that could enhance our understanding of depression in humans.


Assuntos
Depressão , Transtorno Depressivo Maior , Humanos , Camundongos , Animais , Depressão/genética , Depressão/metabolismo , Transtorno Depressivo Maior/genética , Camundongos Endogâmicos ICR , Perfilação da Expressão Gênica , Modelos Animais de Doenças , Ubiquitina Tiolesterase/genética
2.
Toxicol Res ; 39(1): 37-51, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36726823

RESUMO

Febrile seizure (FS) is one of the most prevalent etiological events in childhood affecting 2-5% of children from 3 months to 5 years old. Debates on whether neurodevelopmental consequences rise in later life following a febrile seizure or not are still ongoing however there is limited evidence of its effect, especially in a laboratory setting. Moreover, the comparative study using both male and female animal models is sparse. To examine the effect of FS on the behavioral features of mice, both sexes of ICR mice were induced with hyperthermic seizures through exposure to an infrared heat lamp. The mice were divided into two groups, one receiving a single febrile seizure at postnatal day 11 (P11) and one receiving three FS at P11, P13, and P15. Starting at P30 the FS-induced mice were subjected to a series of behavioral tests. Mice with seizures showed no locomotor and motor coordination deficits, repetitive, and depressive-like behavior. However, the FS-induced mice showed impulsive-like behavior in both elevated plus maze and cliff avoidance tests, which is more prominent in male mice. A greater number of mice displayed impaired CAT in both males and females in the three-time FS-induced group compared to the single induction group. These results demonstrate that after induction of FS, male mice have a higher susceptibility to consequences of febrile seizure than female mice and recurrent febrile seizure has a higher chance of subsequent disorders associated with decreased anxiety and increased impulsivity. We confirmed the dysregulated expression of impulsivity-related genes such as 5-HT1A and tryptophan hydroxylase 2 from the prefrontal cortices of FS-induced mice implying that the 5-HT system would be one of the mechanisms underlying the increased impulsivity after FS. Taken together, these findings are useful in unveiling future discoveries about the effect of childhood febrile seizure and the mechanism behind it.

3.
Biomol Ther (Seoul) ; 31(2): 161-167, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36203404

RESUMO

Despite the various medications used in clinics, the efforts to develop more effective treatments for depression continue to increase in the past decades mainly because of the treatment-resistant population, and the testing of several hypotheses- and target-based treatments. Undesirable side effects and unresponsiveness to current medications fuel the drive to solve this top global health problem. In this study, we focused on neuroinflammatory response-mediated depression which represents a cluster of depression etiology both in animal models and humans. Several meta-analyses reported that proinflammatory cytokines such as interleukin 6 (IL-6) and tumor necrosis factor-α (TNF-α) were increased in major depressive disorder patients. Inflammatory mediators implicated in depression include type-I interferon and inflammasome pathways. To elucidate the molecular mechanisms of neuroinflammatory cascades underlying the pathophysiology of depression, we introduced hycanthone, an antischistosomal drug, to check whether it can counteract depressive-like behaviors in vivo and normalize the inflammation-induced changes in vitro. Lipopolysaccharide (LPS) treatment increased proinflammatory cytokine expression in the murine microglial cells as well as the stimulation of type I interferon-related pathways that are directly or indirectly regulated by Janus kinase-signal transducer and activator of transcription (JAK-STAT) activation. Hycanthone treatment attenuated those changes possibly by inhibiting the JAK-STAT pathway and inflammasome activation. Hycanthone also ameliorated depressive-like behaviors by LPS. Taken together, we suggest that the inhibitory action of hycanthone against the interferon pathway leading to attenuation of depressive-like behaviors can be a novel therapeutic mechanism for treating depression.

4.
Sci Rep ; 12(1): 20966, 2022 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-36470953

RESUMO

Fragile X syndrome (FXS) is a neurodevelopmental disorder that is caused by the loss of Fragile X-linked mental retardation protein (FMRP), an RNA binding protein that can bind and recognize different RNA structures and regulate the target mRNAs' translation involved in neuronal synaptic plasticity. Perturbations of this gene expression network have been related to abnormal behavioral symptoms such as hyperactivity, and impulsivity. Considering the roles of FMRP in the modulation of mRNA translation, we investigated the differentially expressed genes which might be targeted to revert to normal and ameliorate behavioral symptoms. Gene expression data was analyzed and used the connectivity map (CMap) to understand the changes in gene expression in FXS and predict the effective drug candidates. We analyzed the GSE7329 dataset that had 15 control and 8 FXS patients' lymphoblastoid samples. Among 924 genes, 42 genes were selected as signatures for CMap analysis, and 24 associated drugs were found. Pirenperone was selected as a potential drug candidate for FXS for its possible antipsychotic effect. Treatment of pirenperone increased the expression level of Fmr1 gene. Moreover, pirenperone rescued the behavioral deficits in Fmr1 KO mice including hyperactivity, spatial memory, and impulsivity. These results suggest that pirenperone is a new drug candidate for FXS, which should be verified in future studies.


Assuntos
Proteína do X Frágil da Deficiência Intelectual , Síndrome do Cromossomo X Frágil , Piperidinas , Animais , Camundongos , Modelos Animais de Doenças , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Síndrome do Cromossomo X Frágil/tratamento farmacológico , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/metabolismo , Camundongos Knockout , Plasticidade Neuronal , Piperidinas/uso terapêutico
5.
Biomol Ther (Seoul) ; 30(4): 320-327, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35135902

RESUMO

Neurodevelopmental disorders are complex conditions that pose difficulty in the modulation of proper motor, sensory and cognitive function due to dysregulated neuronal development. Previous studies have reported that an imbalance in the excitation/ inhibition (E/I) in the brain regulated by glutamatergic and/or GABAergic neurotransmission can cause neurodevelopmental and neuropsychiatric behavioral deficits such as autism spectrum disorder (ASD). NMDA acts as an agonist at the NMDA receptor and imitates the action of the glutamate on that receptor. NMDA however, unlike glutamate, only binds to and regulates the NMDA receptor subtypes and not the other glutamate receptors. This study seeks to determine whether NMDA administration in mice i.e., over-activation of the NMDA system would result in long-lasting behavioral deficits in the adolescent mice. Both gender mice were treated with NMDA or saline at early postnatal developmental period with significant synaptogenesis and synaptic maturation. On postnatal day 28, various behavioral experiments were conducted to assess and identify behavioral characteristics. NMDA-treated mice show social deficits, and repetitive behavior in both gender mice at adolescent periods. However, only the male mice but not female mice showed increased locomotor activity. This study implies that neonatal exposure to NMDA may illicit behavioral features similar to ASD. This study also confirms the validity of the E/I imbalance theory of ASD and that NMDA injection can be used as a pharmacologic model for ASD. Future studies may explore the mechanism behind the gender difference in locomotor activity as well as the human relevance and therapeutic significance of the present findings.

6.
Biomol Ther (Seoul) ; 30(3): 232-237, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-34702791

RESUMO

Autism spectrum disorder (ASD) having core characteristics of social interaction problems and repetitive behaviors and interests affects individuals at varying degrees and comorbidities, making it difficult to determine the precise etiology underlying the symptoms. Given its heterogeneity, ASD is difficult to treat and the development of therapeutics is slow due to the scarcity of animal models that are easy to produce and screen with. Based on the theory of excitation/inhibition imbalance in the brain with ASD which involves glutamatergic and/or GABAergic neurotransmission, a pharmacologic agent to modulate these receptors might be a good starting point for modeling. N-methyl-D-aspartic acid (NMDA) is an amino acid derivative acting as a specific agonist at the NMDA receptor and therefore imitates the action of the neurotransmitter glutamate on that receptor. In contrast to glutamate, NMDA selectively binds to and regulates the NMDA receptor, but not other glutamate receptors such as AMPA and kainite receptors. Given this role, we aimed to determine whether NMDA administration could result in autistic-like behavior in adolescent mice. Both male and female mice were treated with saline or NMDA (50 and 75 mg/kg) and were tested on various behavior experiments. Interestingly, acute NMDA-treated mice showed social deficits and repetitive behavior similar to ASD phenotypes. These results support the excitation/inhibition imbalance theory of ASD and that NMDA injection can be used as a pharmacologic model of ASD-like behaviors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...