Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2802: 73-106, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38819557

RESUMO

Computational pangenomics deals with the joint analysis of all genomic sequences of a species. It has already been successfully applied to various tasks in many research areas. Further advances in DNA sequencing technologies constantly let more and more genomic sequences become available for many species, leading to an increasing attractiveness of pangenomic studies. At the same time, larger datasets also pose new challenges for data structures and algorithms that are needed to handle the data. Efficient methods oftentimes make use of the concept of k-mers.Core detection is a common way of analyzing a pangenome. The pangenome's core is defined as the subset of genomic information shared among all individual members. Classically, it is not only determined on the abstract level of genes but can also be described on the sequence level.In this chapter, we provide an overview of k-mer-based methods in the context of pangenomics studies. We first revisit existing software solutions for k-mer counting and k-mer set representation. Afterward, we describe the usage of two k-mer-based approaches, Pangrowth and Corer, for pangenomic core detection.


Assuntos
Algoritmos , Biologia Computacional , Genômica , Software , Genômica/métodos , Biologia Computacional/métodos , Análise de Sequência de DNA/métodos , Humanos , Sequenciamento de Nucleotídeos em Larga Escala/métodos
2.
PLoS One ; 18(11): e0294342, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37972102

RESUMO

Flavonoids and carotenoids are pigments involved in stress mitigation and numerous other processes. Both pigment classes can contribute to flower and fruit coloration. Flavonoid aglycones and carotenoids are produced by a pathway that is largely conserved across land plants. Glycosylations, acylations, and methylations of the flavonoid aglycones can be species-specific and lead to a plethora of biochemically diverse flavonoids. We previously developed KIPEs for the automatic annotation of biosynthesis pathways and presented an application on the flavonoid aglycone biosynthesis. KIPEs3 is an improved version with additional features and the potential to identify not just the core biosynthesis players, but also candidates involved in the decoration steps and in the transport of flavonoids. Functionality of KIPEs3 is demonstrated through the analysis of the flavonoid biosynthesis in Arabidopsis thaliana Nd-1, Capsella grandiflora, and Dioscorea dumetorum. We demonstrate the applicability of KIPEs to other pathways by adding the carotenoid biosynthesis to the repertoire. As a technical proof of concept, the carotenoid biosynthesis was analyzed in the same species and Daucus carota. KIPEs3 is available as an online service to enable access without prior bioinformatics experience. KIPEs3 facilitates the automatic annotation and analysis of biosynthesis pathways with a consistent and high quality in a large number of plant species. Numerous genome sequencing projects are generating a huge amount of data sets that can be analyzed to identify evolutionary patterns and promising candidate genes for biotechnological and breeding applications.


Assuntos
Vias Biossintéticas , Melhoramento Vegetal , Vias Biossintéticas/genética , Flavonoides , Biologia Computacional , Carotenoides , Regulação da Expressão Gênica de Plantas
3.
Bioinformatics ; 37(24): 4868-4870, 2021 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-34132752

RESUMO

SUMMARY: SANS serif is a novel software for alignment-free, whole-genome-based phylogeny estimation that follows a pangenomic approach to efficiently calculate a set of splits in a phylogenetic tree or network. AVAILABILITY AND IMPLEMENTATION: Implemented in C++ and supported on Linux, MacOS and Windows. The source code is freely available for download at https://gitlab.ub.uni-bielefeld.de/gi/sans. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Genoma , Software , Filogenia
4.
Plants (Basel) ; 9(4)2020 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-32252268

RESUMO

High-throughput sequencing technologies have rapidly developed during the past years and have become an essential tool in plant sciences. However, the analysis of genomic data remains challenging and relies mostly on the performance of automatic pipelines. Frequently applied pipelines involve the alignment of sequence reads against a reference sequence and the identification of sequence variants. Since most benchmarking studies of bioinformatics tools for this purpose have been conducted on human datasets, there is a lack of benchmarking studies in plant sciences. In this study, we evaluated the performance of 50 different variant calling pipelines, including five read mappers and ten variant callers, on six real plant datasets of the model organism Arabidopsis thaliana. Sets of variants were evaluated based on various parameters including sensitivity and specificity. We found that all investigated tools are suitable for analysis of NGS data in plant research. When looking at different performance metrics, BWA-MEM and Novoalign were the best mappers and GATK returned the best results in the variant calling step.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...