Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 5: 15040, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26463421

RESUMO

Biodegradable elastomers are a popular choice for tissue engineering scaffolds, particularly in mechanically challenging settings (e.g. the skin). As the optimal rate of scaffold degradation depends on the tissue type to be regenerated, next-generation scaffolds must demonstrate tuneable degradation patterns. Previous investigations mainly focussed on the integration of more or less hydrolysable components to modulate degradation rates. In this study, however, the objective was to develop and synthesize a family of novel biodegradable polyurethanes (PUs) based on a poly(ε-caprolactone urea)urethane backbone integrating polyhedral oligomeric silsesquioxane (POSS-PCLU) with varying amounts of hard segments (24%, 28% and 33% (w/v)) in order to investigate the influence of hard segment chemistry on the degradation rate and profile. PUs lacking POSS nanoparticles served to prove the important function of POSS in maintaining the mechanical structures of the PU scaffolds before, during and after degradation. Mechanical testing of degraded samples revealed hard segment-dependent modulation of the materials' viscoelastic properties, which was attributable to (i) degradation-induced changes in the PU crystallinity and (ii) either the presence or absence of POSS. In conclusion, this study presents a facile method of controlling degradation profiles of PU scaffolds used in tissue engineering applications.


Assuntos
Implantes Absorvíveis , Elastômeros/química , Nanoconjugados/química , Compostos de Organossilício/química , Poliésteres/química , Alicerces Teciduais , Módulo de Elasticidade , Análise de Falha de Equipamento , Cinética , Teste de Materiais , Nanoconjugados/ultraestrutura , Tamanho da Partícula , Desenho de Prótese , Resistência à Tração , Engenharia Tecidual/instrumentação , Uretana/química , Viscosidade
2.
J Polym Sci A Polym Chem ; 51(12): 2588-2597, 2013 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-23761950

RESUMO

Synthetic glycopolymers are important natural oligosaccharides mimics for many biological applications. To develop glycopolymeric drugs and therapeutic agents, factors that control the receptor-ligand interaction need to be investigated. A library of well-defined glycopolymers has been prepared by the combination of copper mediated living radical polymerization and CuAAC click reaction via post-functionalization of alkyne-containing precursor polymers with different sugar azides. Employing Concanavalin A as the model receptor, we explored the influence of the nature and densities of different sugars residues (mannose, galactose, and glucose) on the stoichiometry of the cluster, the rate of the cluster formation, the inhibitory potency of the glycopolymers, and the stability of the turbidity through quantitative precipitation assays, turbidimetry assays, inhibitory potency assays, and reversal aggregation assays. The diversities of binding properties contributed by different clustering parameters will make it possible to define the structures of the multivalent ligands and densities of binding epitopes tailor-made for specific functions in the lectin-ligand interaction. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2588-2597.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...