Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
bioRxiv ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38798496

RESUMO

Advancements in long-read transcriptome sequencing (long-RNA-seq) technology have revolutionized the study of isoform diversity. These full-length transcripts enhance the detection of various transcriptome structural variations, including novel isoforms, alternative splicing events, and fusion transcripts. By shifting the open reading frame or altering gene expressions, studies have proved that these transcript alterations can serve as crucial biomarkers for disease diagnosis and therapeutic targets. In this project, we proposed IFDlong, a bioinformatics and biostatistics tool to detect isoform and fusion transcripts using bulk or single-cell long-RNA-seq data. Specifically, the software performed gene and isoform annotation for each long-read, defined novel isoforms, quantified isoform expression by a novel expectation-maximization algorithm, and profiled the fusion transcripts. For evaluation, IFDlong pipeline achieved overall the best performance when compared with several existing tools in large-scale simulation studies. In both isoform and fusion transcript quantification, IFDlong is able to reach more than 0.8 Spearman's correlation with the truth, and more than 0.9 cosine similarity when distinguishing multiple alternative splicing events. In novel isoform simulation, IFDlong can successfully balance the sensitivity (higher than 90%) and specificity (higher than 90%). Furthermore, IFDlong has proved its accuracy and robustness in diverse in-house and public datasets on healthy tissues, cell lines and multiple types of diseases. Besides bulk long-RNA-seq, IFDlong pipeline has proved its compatibility to single-cell long-RNA-seq data. This new software may hold promise for significant impact on long-read transcriptome analysis. The IFDlong software is available at https://github.com/wenjiaking/IFDlong.

2.
bioRxiv ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38712138

RESUMO

Background: DNA sequencing is a critical tool in modern biology. Over the last two decades, it has been revolutionized by the advent of massively parallel sequencing, leading to significant advances in the genome and transcriptome sequencing of various organisms. Nevertheless, challenges with accuracy, lack of competitive options and prohibitive costs associated with high throughput parallel short-read sequencing persist. Results: Here, we conduct a comparative analysis using matched DNA and RNA short-reads assays between Element Biosciences' AVITI and Illumina's NextSeq 550 chemistries. Similar comparisons were evaluated for synthetic long-read sequencing for RNA and targeted single-cell transcripts between the AVITI and Illumina's NovaSeq 6000. For both DNA and RNA short-read applications, the study found that the AVITI produced significantly higher per sequence quality scores. For PCR-free DNA libraries, we observed an average 89.7% lower experimentally determined error rate when using the AVITI chemistry, compared to the NextSeq 550. For short-read RNA quantification, AVITI platform had an average of 32.5% lower error rate than that for NextSeq 550. With regards to synthetic long-read mRNA and targeted synthetic long read single cell mRNA sequencing, both platforms' respective chemistries performed comparably in quantification of genes and isoforms. The AVITI displayed a marginally lower error rate for long reads, with fewer chemistry-specific errors and a higher mutation detection rate. Conclusion: These results point to the potential of the AVITI platform as a competitive candidate in high-throughput short read sequencing analyses when juxtaposed with the Illumina NextSeq 550.

3.
Hepatol Commun ; 8(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38497929

RESUMO

BACKGROUND: Liver cancer is one of the most lethal malignancies for humans. The treatment options for advanced-stage liver cancer remain limited. A new treatment is urgently needed to reduce the mortality of the disease. METHODS: In this report, we developed a technology for mutation site insertion of a suicide gene (herpes simplex virus type 1- thymidine kinase) based on type II CRISPR RNA-guided endonuclease Cas9-mediated genome editing to treat liver cancers. RESULTS: We applied the strategy to 3 different mutations: S45P mutation of catenin beta 1, chromosome breakpoint of solute carrier family 45 member 2-alpha-methylacyl-CoA racemase gene fusion, and V235G mutation of SAFB-like transcription modulator. The results showed that the herpes simplex virus type 1-thymidine kinase insertion rate at the S45P mutation site of catenin beta 1 reached 77.8%, while the insertion rates at the breakpoint of solute carrier family 45 member 2 - alpha-methylacyl-CoA racemase gene fusion were 95.1%-98.7%, and the insertion at V235G of SAFB-like transcription modulator was 51.4%. When these targeting reagents were applied to treat mouse spontaneous liver cancer induced by catenin beta 1S45P or solute carrier family 45 member 2-alpha-methylacyl-CoA racemase, the mice experienced reduced tumor burden and increased survival rate. Similar results were also obtained for the xenografted liver cancer model: Significant reduction of tumor volume, reduction of metastasis rate, and improved survival were found in mice treated with the targeting reagent, in comparison with the control-treated groups. CONCLUSIONS: Our studies suggested that mutation targeting may hold promise as a versatile and effective approach to treating liver cancers.


Assuntos
Herpesvirus Humano 1 , Neoplasias Hepáticas , Humanos , Animais , Camundongos , Timidina Quinase/genética , Sistemas CRISPR-Cas/genética , Herpesvirus Humano 1/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/terapia , Cateninas , Mutação/genética
4.
Heliyon ; 10(1): e23561, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38187339

RESUMO

Diabetes mellitus (DM) poses a significant global health burden, with hyperglycemia being a primary contributor to complications and high morbidity associated with this disorder. Existing glucose management strategies have shown suboptimal effectiveness, necessitating alternative approaches. In this study, we explored the role of high mobility group box 1 (HMGB1) in hyperglycemia, a protein implicated in initiating inflammation and strongly correlated with DM onset and progression. We hypothesized that HMGB1 knockdown will mitigate hyperglycemia severity and enhance glucose tolerance. To test this hypothesis, we utilized a novel inducible HMGB1 knockout (iHMGB1 KO) mouse model exhibiting systemic HMGB1 knockdown. Hyperglycemic phenotype was induced using low dose streptozotocin (STZ) injections, followed by longitudinal glucose measurements and oral glucose tolerance tests to evaluate the effect of HMGB1 knockdown on glucose metabolism. Our findings showed a substantial reduction in glucose levels and enhanced glucose tolerance in HMGB1 knockdown mice. Additionally, we performed RNA sequencing analyses, which identified potential alternations in genes and molecular pathways within the liver and skeletal muscle tissue that may account for the in vivo phenotypic changes observed in hyperglycemic mice following HMGB1 knockdown. In conclusion, our present study delivers the first direct evidence of a causal relationship between systemic HMGB1 knockdown and hyperglycemia in vivo, an association that had remained unexamined prior to this research. This discovery positions HMGB1 knockdown as a potentially efficacious therapeutic target for addressing hyperglycemia and, by extension, the DM epidemic. Furthermore, we have revealed potential underlying mechanisms, establishing the essential groundwork for subsequent in-depth mechanistic investigations focused on further elucidating and harnessing the promising therapeutic potential of HMGB1 in DM management.

5.
Elife ; 122024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38206124

RESUMO

The protein diversity of mammalian cells is determined by arrays of isoforms from genes. Genetic mutation is essential in species evolution and cancer development. Accurate long-read transcriptome sequencing at single-cell level is required to decipher the spectrum of protein expressions in mammalian organisms. In this report, we developed a synthetic long-read single-cell sequencing technology based on LOOPSeq technique. We applied this technology to analyze 447 transcriptomes of hepatocellular carcinoma (HCC) and benign liver from an individual. Through Uniform Manifold Approximation and Projection analysis, we identified a panel of mutation mRNA isoforms highly specific to HCC cells. The evolution pathways that led to the hyper-mutation clusters in single human leukocyte antigen molecules were identified. Novel fusion transcripts were detected. The combination of gene expressions, fusion gene transcripts, and mutation gene expressions significantly improved the classification of liver cancer cells versus benign hepatocytes. In conclusion, LOOPSeq single-cell technology may hold promise to provide a new level of precision analysis on the mammalian transcriptome.


Assuntos
Células Artificiais , Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Humanos , Neoplasias Hepáticas/genética , Carcinoma Hepatocelular/genética , Isoformas de Proteínas/genética , Mamíferos
6.
bioRxiv ; 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-36993628

RESUMO

The protein diversity of mammalian cells is determined by arrays of isoforms from genes. Genetic mutation is essential in species evolution and cancer development. Accurate Long-read transcriptome sequencing at single-cell level is required to decipher the spectrum of protein expressions in mammalian organisms. In this report, we developed a synthetic long-read single-cell sequencing technology based on LOOPseq technique. We applied this technology to analyze 447 transcriptomes of hepatocellular carcinoma (HCC) and benign liver from an individual. Through Uniform Manifold Approximation and Projection (UMAP) analysis, we identified a panel of mutation mRNA isoforms highly specific to HCC cells. The evolution pathways that led to the hyper-mutation clusters in single human leukocyte antigen (HLA) molecules were identified. Novel fusion transcripts were detected. The combination of gene expressions, fusion gene transcripts, and mutation gene expressions significantly improved the classification of liver cancer cells versus benign hepatocytes. In conclusion, LOOPseq single-cell technology may hold promise to provide a new level of precision analysis on the mammalian transcriptome.

7.
Am J Pathol ; 193(4): 392-403, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36681188

RESUMO

Prostate cancer remains one of the most fatal malignancies in men in the United States. Predicting the course of prostate cancer is challenging given that only a fraction of prostate cancer patients experience cancer recurrence after radical prostatectomy or radiation therapy. This study examined the expressions of 14 fusion genes in 607 prostate cancer samples from the University of Pittsburgh, Stanford University, and the University of Wisconsin-Madison. The profiling of 14 fusion genes was integrated with Gleason score of the primary prostate cancer and serum prostate-specific antigen level to develop machine-learning models to predict the recurrence of prostate cancer after radical prostatectomy. Machine-learning algorithms were developed by analysis of the data from the University of Pittsburgh cohort as a training set using the leave-one-out cross-validation method. These algorithms were then applied to the data set from the combined Stanford/Wisconsin cohort (testing set). The results showed that the addition of fusion gene profiling consistently improved the prediction accuracy rate of prostate cancer recurrence by Gleason score, serum prostate-specific antigen level, or a combination of both. These improvements occurred in both the training and testing cohorts and were corroborated by multiple models.


Assuntos
Antígeno Prostático Específico , Neoplasias da Próstata , Masculino , Humanos , Antígeno Prostático Específico/genética , Recidiva Local de Neoplasia/patologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/cirurgia , Neoplasias da Próstata/patologia , Próstata/patologia , Prostatectomia , Prognóstico
8.
ACS Appl Mater Interfaces ; 14(48): 54044-54050, 2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36413600

RESUMO

The exploration of new synthesis methods is important for the improvement of the thermoelectric property of a material for the different mechanisms of microstructure fabrication, surface activity modulation, and particle refinement. Herein, we prepared p-Bi2Te3 bulk materials by a simple synthesis method of the plasma-assisted ball milling, which yielded finer nanopowders, higher texture of in-plane direction, and higher efficiency compared to the traditional ball milling, favoring the simultaneous improvement of electrical and thermal properties. When combined with the Te liquid sintering, nano-/microscale hierarchical pores were fabricated and the carrier mobility was also increased, which together resulted in the low lattice thermal conductivity of 0.52 W·m-1·K-1 and the high power factor of 43.4 µW·cm-1·K-2 at 300 K, as well as the ranking ahead zT of 1.4@375 K. Thus, this work demonstrated the advantages of plasma-assisted ball milling in highly efficient synthesis of p-type Bi2Te3 with promising thermoelectric performance, which can also be utilized to prepare other thermoelectric materials.

9.
Hepatol Commun ; 6(1): 209-222, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34505419

RESUMO

Chromosome rearrangement is one of the hallmarks of human malignancies. Gene fusion is one of the consequences of chromosome rearrangements. In this report, we show that gene fusion between solute carrier family 45 member 2 (SLC45A2) and alpha-methylacyl-coenzyme A racemase (AMACR) occurs in eight different types of human malignancies, with frequencies ranging from 45% to 97%. The chimeric protein is translocated to the lysosomal membrane and activates the extracellular signal-regulated kinase signaling cascade. The fusion protein promotes cell growth, accelerates migration, resists serum starvation-induced cell death, and is essential for cancer growth in mouse xenograft cancer models. Introduction of SLC45A2-AMACR into the mouse liver using a sleeping beauty transposon system and somatic knockout of phosphatase and TENsin homolog (Pten) generated spontaneous liver cancers within a short period. Conclusion: The gene fusion between SLC45A2 and AMACR may be a driving event for human liver cancer development.


Assuntos
Antígenos de Neoplasias/genética , Fusão Gênica , Proteínas de Membrana Transportadoras/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Neoplasias/enzimologia , Neoplasias/genética , Racemases e Epimerases/genética , Animais , Linhagem Celular Tumoral , Ativação Enzimática , Humanos , Neoplasias Hepáticas/enzimologia , Neoplasias Hepáticas/genética , Proteínas de Membrana Lisossomal/genética , Camundongos Knockout , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteínas de Fusão Oncogênica/genética , Translocação Genética
10.
Hepatol Commun ; 6(4): 710-727, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34725972

RESUMO

Hepatocellular carcinoma (HCC) is one of the most lethal human cancers. Liver transplantation has been an effective approach to treat liver cancer. However, significant numbers of patients with HCC experience cancer recurrence, and the selection of suitable candidates for liver transplant remains a challenge. We developed a model to predict the likelihood of HCC recurrence after liver transplantation based on transcriptome and whole-exome sequencing analyses. We used a training cohort and a subsequent testing cohort based on liver transplantation performed before or after the first half of 2012. We found that the combination of transcriptome and mutation pathway analyses using a random forest machine learning correctly predicted HCC recurrence in 86.8% of the training set. The same algorithm yielded a correct prediction of HCC recurrence of 76.9% in the testing set. When the cohorts were combined, the prediction rate reached 84.4% in the leave-one-out cross-validation analysis. When the transcriptome analysis was combined with Milan criteria using the k-top scoring pairs (k-TSP) method, the testing cohort prediction rate improved to 80.8%, whereas the training cohort and the combined cohort prediction rates were 79% and 84.4%, respectively. Application of the transcriptome/mutation pathways RF model on eight tumor nodules from 3 patients with HCC yielded 8/8 consistency, suggesting a robust prediction despite the heterogeneity of HCC. Conclusion: The genome prediction model may hold promise as an alternative in selecting patients with HCC for liver transplant.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Transplante de Fígado , Carcinoma Hepatocelular/diagnóstico , Exoma/genética , Humanos , Neoplasias Hepáticas/diagnóstico , Recidiva Local de Neoplasia/diagnóstico , Estudos Retrospectivos , Transcriptoma/genética , Sequenciamento do Exoma
11.
Commun Biol ; 4(1): 506, 2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33907296

RESUMO

The characterization of human gene expression is limited by short read lengths, high error rates and large input requirements. Here, we used a synthetic long read (SLR) sequencing approach, LoopSeq, to generate accurate sequencing reads that span full length transcripts using standard short read data. LoopSeq identified isoforms from control samples with 99.4% accuracy and a 0.01% per-base error rate, exceeding the accuracy reported for other long-read technologies. Applied to targeted transcriptome sequencing from colon cancers and their metastatic counterparts, LoopSeq revealed large scale isoform redistributions from benign colon mucosa to primary colon cancer and metastatic cancer and identified several previously unknown fusion isoforms. Strikingly, single nucleotide variants (SNVs) occurred dominantly in specific isoforms and some SNVs underwent isoform switching in cancer progression. The ability to use short reads to generate accurate long-read data as the raw unit of information holds promise as a widely accessible approach in transcriptome sequencing.


Assuntos
Processamento Alternativo , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de RNA/métodos , Transcriptoma , Humanos , Isoformas de Proteínas
12.
Oncogene ; 40(6): 1064-1076, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33323972

RESUMO

Inactivation of Pten gene through deletions and mutations leading to excessive pro-growth signaling pathway activations frequently occurs in cancers. Here, we report a Pten derived pro-cancer growth gene fusion Pten-NOLC1 originated from a chr10 genome rearrangement and identified through a transcriptome sequencing analysis of human cancers. Pten-NOLC1 fusion is present in primary human cancer samples and cancer cell lines from different organs. The product of Pten-NOLC1 is a nuclear protein that interacts and activates promoters of EGFR, c-MET, and their signaling molecules. Pten-NOLC1 promotes cancer proliferation, growth, invasion, and metastasis, and reduces the survival of animals xenografted with Pten-NOLC1-expressing cancer cells. Genomic disruption of Pten-NOLC1 induces cancer cell death, while genomic integration of this fusion gene into the liver coupled with somatic Pten deletion produces spontaneous liver cancers in mice. Our studies indicate that Pten-NOLC1 gene fusion is a driver for human cancers.


Assuntos
Neoplasias Hepáticas/genética , Proteínas Nucleares/genética , PTEN Fosfo-Hidrolase/genética , Fosfoproteínas/genética , Proteínas Proto-Oncogênicas c-met/genética , Animais , Linhagem Celular Tumoral , Proliferação de Células/genética , Receptores ErbB/genética , Regulação Neoplásica da Expressão Gênica/genética , Genoma Humano/genética , Xenoenxertos , Humanos , Neoplasias Hepáticas/patologia , Camundongos , Proteínas de Fusão Oncogênica/genética , Transdução de Sinais/genética
13.
Am J Pathol ; 184(10): 2840-9, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25238935

RESUMO

The mechanisms underlying the potential for aggressive behavior of prostate cancer (PCa) remain elusive. In this study, whole genome and/or transcriptome sequencing was performed on 19 specimens of PCa, matched adjacent benign prostate tissues, matched blood specimens, and organ donor prostates. A set of novel fusion transcripts was discovered in PCa. Eight of these fusion transcripts were validated through multiple approaches. The occurrence of these fusion transcripts was then analyzed in 289 prostate samples from three institutes, with clinical follow-up ranging from 1 to 15 years. The analyses indicated that most patients [69 (91%) of 76] positive for any of these fusion transcripts (TRMT11-GRIK2, SLC45A2-AMACR, MTOR-TP53BP1, LRRC59-FLJ60017, TMEM135-CCDC67, KDM4-AC011523.2, MAN2A1-FER, and CCNH-C5orf30) experienced PCa recurrence, metastases, and/or PCa-specific death after radical prostatectomy. These outcomes occurred in only 37% (58/157) of patients without carrying those fusion transcripts. Three fusion transcripts occurred exclusively in PCa samples from patients who experienced recurrence or PCaerelated death. The formation of these fusion transcripts may be the result of genome recombination. A combination of these fusion transcripts in PCa with Gleason's grading or with nomogram significantly improves the prediction rate of PCa recurrence. Our analyses suggest that formation of these fusion transcripts may underlie the aggressive behavior of PCa.


Assuntos
Fusão Gênica , Neoplasias da Próstata/genética , RNA Mensageiro/genética , Transcriptoma , Adulto , Idoso , Estudos de Coortes , Seguimentos , Biblioteca Gênica , Humanos , Hibridização in Situ Fluorescente , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Recidiva Local de Neoplasia , Prognóstico , Próstata/patologia , Prostatectomia , Neoplasias da Próstata/patologia , Alinhamento de Sequência , Análise de Sequência de DNA , Adulto Jovem
14.
Am J Pathol ; 183(6): 1960-1970, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24113458

RESUMO

DNA methylation is one of the most important epigenetic mechanisms in regulating gene expression. Genome hypermethylation has been proposed as a critical mechanism in human malignancies. However, whole-genome quantification of DNA methylation of human malignancies has rarely been investigated, and the significance of the genome distribution of CpG methylation is unclear. We performed whole-genome methylation sequencing to investigate the methylation profiles of 13 prostate samples: 5 prostate cancers, 4 matched benign prostate tissues adjacent to tumor, and 4 age-matched organ-donor prostate tissues. Alterations of methylation patterns occurred in prostate cancer and in benign prostate tissues adjacent to tumor, in comparison with age-matched organ-donor prostates. More than 95% alterations of genome methylation occurred in sequences outside CpG islands. Only a small fraction of the methylated CpG islands had any effect on RNA expression. Both intragene and promoter CpG island methylations negatively affected gene expression. However, suppressions of RNA expression did not correlate with levels of CpG island methylation, suggesting that CpG island methylation alone might not be sufficient to shut down gene expression. Motif analysis revealed a consensus sequence containing Sp1 binding motif significantly enriched in the effective CpG islands.


Assuntos
Ilhas de CpG , Metilação de DNA , Genoma Humano , Neoplasias da Próstata/metabolismo , Transcrição Gênica , Idoso , Estudo de Associação Genômica Ampla , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia
15.
Am J Pathol ; 182(3): 796-805, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23313748

RESUMO

MCM7 is one of the pivotal DNA replication licensing factors in controlling DNA synthesis and cell entry into S phase. Its expression and DNA copy number are some of the most predictive factors for the growth and behavior of human malignancies. In this study, we identified that MCM7 interacts with the receptor for activated protein kinase C 1 (RACK1), a protein kinase C (PKC) adaptor, in vivo and in vitro. The RACK1 binding motif in MCM7 is located at the amino acid 221-248. Knocking down RACK1 significantly reduced MCM7 chromatin association, DNA synthesis, and cell cycle entry into S phase. Activation of PKC by 12-O-tetradecanoylphorbol-13-acetate dramatically decreased MCM7 DNA replication licensing and induced cell growth arrest. Activation of PKC induced redistribution of RACK1 from nucleus to cytoplasm and decreased RACK1-chromatin association. The MCM7 mutant that does not bind RACK1 has no DNA replication licensing or oncogenic transformation activity. As a result, this study demonstrates a novel signaling mechanism that critically controls DNA synthesis and cell cycle progression.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/metabolismo , Receptores de Superfície Celular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Transformação Celular Neoplásica , Cromatina/metabolismo , DNA/biossíntese , Ativação Enzimática , Humanos , Componente 7 do Complexo de Manutenção de Minicromossomo , Modelos Biológicos , Ligação Proteica , Proteína Quinase C/metabolismo , Receptores de Quinase C Ativada , Fase S
16.
J Biol Chem ; 287(20): 16890-902, 2012 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-22461624

RESUMO

Expression of glutathione peroxidase 3 (GPx3) is down-regulated in a variety of human malignancies. Both methylation and deletion of GPx3 gene underlie the alterations of GPx3 expression in prostate cancer. A strong correlation between the down-regulation of GPx3 expression and progression of prostate cancer and the suppression of prostate cancer xenografts in SCID mice by forced expression of GPx3 suggests a tumor suppression role of GPx3 in prostate cancer. However, the mechanism of GPx3-mediated tumor suppression remains unclear. In this report, GPx3 was found to interact directly with p53-induced gene 3 (PIG3). Forced overexpression of GPx3 in prostate cancer cell lines DU145 and PC3 as well as immortalized prostate epithelial cells RWPE-1 increased apoptotic cell death. Expression of GPx3(x73c), a peroxidase-negative OPAL codon mutant, in DU145 and PC3 cells also increased cell death. The induced expression of GPx3 in DU145 and PC3 cells resulted in an increase in reactive oxygen species and caspase-3 activity. These activities were abrogated by either knocking down PIG3 or mutating the PIG3 binding motif in GPx3 or binding interference from a peptide corresponding to PIG3 binding motif in GPx3. In addition, UV-treated RWPE-1 cells underwent apoptotic death, which was partially prevented by knocking down GPx3 or PIG3, suggesting that GPx3-PIG3 signaling is critical for UV-induced apoptosis. Taken together, these results reveal a novel signaling pathway of GPx3-PIG3 in the regulation of cell death in prostate cancer.


Assuntos
Apoptose , Glutationa Peroxidase/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neoplasias da Próstata/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Transdução de Sinais , Motivos de Aminoácidos , Animais , Linhagem Celular Tumoral , Técnicas de Silenciamento de Genes , Glutationa Peroxidase/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Camundongos , Camundongos SCID , Transplante de Neoplasias , Neoplasias da Próstata/genética , Ligação Proteica/genética , Ligação Proteica/efeitos da radiação , Proteínas Proto-Oncogênicas/genética , Transplante Heterólogo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Raios Ultravioleta
17.
Cancer Lett ; 319(1): 56-65, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-22200613

RESUMO

We have shown that the ectopic expression of Interferon Regulatory Factor 1 (IRF-1) results in human cancer cell death accompanied by the down-regulation of the Inhibitor of Apoptosis Protein (IAP) survivin and the induction of the cyclin-dependent kinase inhibitor p21(WAF1/CIP1). In this report, we investigated the direct role of p21 in the suppression of survivin. We show that IRF-1 down-regulates cyclin B1, cdc-2, cyclin E, E2F1, Cdk2, Cdk4, and results in p21-mediated G1 cell cycle arrest. Interestingly, while p21 directly mediates G1 cell cycle arrest, IRF-1 or other IRF-1 signaling pathways may directly regulate survivin in human cancer cells.


Assuntos
Pontos de Checagem do Ciclo Celular/fisiologia , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Proteínas Inibidoras de Apoptose/metabolismo , Fator Regulador 1 de Interferon/metabolismo , Proteínas de Neoplasias/metabolismo , Linhagem Celular Tumoral , Regulação para Baixo , Humanos , Survivina
18.
Am J Pathol ; 173(6): 1758-67, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18988800

RESUMO

MCM7 is a critical component of the DNA replication licensing complex that controls DNA replication in both yeast and Xenopus. Our previous studies have indicated that MCM7 is both amplified and overexpressed in metastatic prostate cancer. In this study, we found that MCM7 interacts with the androgen receptor (AR) with high affinity both in vitro and in vivo. We identified the AR-binding motif for MCM7, comprised of amino acids 221 to 248, and the MCM7-binding motif for the AR, comprised of amino acids 426 to 475. AR stimulation with high doses of the synthetic androgen R1881 led to a decrease in MCM7 binding to genomic DNA, a reduction of DNA synthesis, decreases in the number of cells progressing through S phase and cell proliferation, whereas low doses produced an increase in the DNA licensing activity of MCM7 and higher levels of cell proliferation. In addition, the MCM7/AR interaction down-regulated MCM7 expression. The gene transcription or repressor activity of AR is dependent on its interaction with MCM7 because either a mutant AR defective in its interaction with MCM7 or a MCM7 knockdown primarily eliminated AR effects on gene expression. Thus, this study reveals a novel mechanism by which AR and MCM7 facilitate each other's function, suggesting that AR-independent activation of MCM7 may be a mechanism by which prostate cancers bypass therapeutically induced AR blockade.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas Nucleares/metabolismo , Receptores Androgênicos/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Animais , Sítios de Ligação , Proteínas de Ciclo Celular/genética , Linhagem Celular , Proteínas de Ligação a DNA/genética , Humanos , Masculino , Metribolona/metabolismo , Camundongos , Componente 7 do Complexo de Manutenção de Minicromossomo , Proteínas Nucleares/genética , Neoplasias da Próstata/metabolismo , Receptores Androgênicos/genética , Proteínas Recombinantes de Fusão/genética , Xenopus laevis
19.
J Natl Cancer Inst ; 99(11): 868-80, 2007 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-17551147

RESUMO

BACKGROUND: Integrins are the major adhesive molecules in mammalian cells. Each integrin subtype plays a unique role in cell differentiation and embryo development. However, integrin involvement in carcinogenesis has not been well defined. METHODS: We identified mutations in integrin alpha7 by sequencing genomic DNAs and cDNAs from 122 specimens, including 62 primary human tumor samples, four cell lines, and 56 matched normal tissues. We evaluated the tumor suppressor activity of integrin alpha7 with colony formation, soft agar colony growth, and cell migration assays by forcing its expression in PC-3 and Du145 prostate cancer cells and SK-UT-1 leiomyosarcoma cells. PC-3 and Du145 xenograft tumors with increased levels of integrin alpha7 in severe combined immune deficient mice were used to assess the effect of integrin alpha7 on tumor growth and metastasis. Immunostaining was used to localize and to measure the level of integrin alpha7 in 701 and 141 specimens of prostate and smooth muscle, respectively. A meta-analysis of integrin alpha7 mRNA microarray data from four studies was performed. Kaplan-Meier analyses were used to assess survival. All statistical tests were two-sided. RESULTS: Integrin alpha7 mutations that generate truncations were found in specimens of 16 of 28 prostate cancers (57%, 95% confidence interval [CI] = 37% to 76%), five of 24 hepatocellular carcinomas (21%, 95% CI = 7% to 42%), five of six glioblastomas multiforme (83%, 95% CI = 36% to 99%), and one of four leiomyosarcomas (25%, 95% CI = 0.6% to 81%). Integrin alpha7 mutations were associated with increased recurrence of human prostate cancer (nine recurrences among 13 patients with integrin alpha7 mutations versus one among eight without such mutations; odds ratio [OR] = 14, 95% CI = 1.15 to 782, P = .024) and hepatocellular carcinoma (five recurrences among eight patients with integrin alpha7 mutations versus one among 16 without such mutations, OR = 21, 95% CI = 1.6 to 1245; P = .007). Forced expression of normal integrin alpha7 in prostate cancer and leiomyosarcoma cell lines suppressed tumor growth and metastasis both in vitro and in vivo. Focal or no integrin alpha7 expression in human prostate cancer and soft tissue leiomyosarcoma was associated with a reduction of metastasis-free survival (for example, for prostate cancer with focal or no expression, 5-year metastasis-free survival was 32%, 95% CI = 24.4% to 40.3%, and for prostate cancer with at least weak expression, it was 85%, 95% CI = 79% to 91%; P<.001). Microarray analysis indicated that cyclin D kinase inhibitor 3 and GTPase-activating protein may be possible targets for integrin alpha7-mediated tumor suppressor activity and inhibition of cell motility. CONCLUSION: Integrin alpha7 appears to be a tumor suppressor that operates by suppressing tumor growth and retarding migration.


Assuntos
Antígenos CD/genética , Glioblastoma/genética , Cadeias alfa de Integrinas/genética , Leiomiossarcoma/genética , Neoplasias Hepáticas/genética , Mutação/genética , Neoplasias da Próstata/genética , Idoso , Animais , Antígenos CD/metabolismo , Biomarcadores Tumorais/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/secundário , Movimento Celular , Ensaio de Unidades Formadoras de Colônias , Glioblastoma/metabolismo , Glioblastoma/secundário , Humanos , Técnicas Imunoenzimáticas , Imunoprecipitação , Cadeias alfa de Integrinas/antagonistas & inibidores , Cadeias alfa de Integrinas/metabolismo , Leiomiossarcoma/metabolismo , Leiomiossarcoma/secundário , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/secundário , Masculino , Camundongos , Camundongos SCID , Análise em Microsséries , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/metabolismo , Recidiva Local de Neoplasia/patologia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/secundário , RNA Interferente Pequeno/farmacologia , Taxa de Sobrevida , Análise Serial de Tecidos , Transplante Heterólogo , Células Tumorais Cultivadas
20.
Hepatology ; 44(4): 1012-24, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17006932

RESUMO

This study analyzed gene expression patterns and global genomic alterations in hepatocellular carcinomas (HCC), hepatoblastomas (HPBL), tissue adjacent to HCC and normal liver tissue derived from normal livers and hepatic resections. We found that HCC and adjacent non-neoplastic cirrhotic tissue have considerable overlap in gene expression patterns compared to normal liver. Several genes including Glypican 3, spondin-2, PEG10, EDIL3 and Osteopontin are over-expressed in HCC vs. adjacent tissue whereas Ficolin 3 is the most consistently under-expressed gene. HCC can be subdivided into three clusters based on gene expression patterns. HCC and HPBL have clearly different patterns of gene expression, with genes IGF2, Fibronectin, DLK1, TGFb1, MALAT1 and MIG6 being over-expressed in HPBL versus HCC. In addition, specific areas of the genome appear unstable in HCC, with the same regions undergoing either deletion or increased gene dosage in all HCC. In conclusion, a set of specific genes and areas of genomic instability are found across the board in liver neoplasia.


Assuntos
Carcinoma Hepatocelular/genética , Fibrose/genética , Perfilação da Expressão Gênica , Hepatoblastoma/genética , Neoplasias Hepáticas/genética , Proteínas Adaptadoras de Transdução de Sinal/biossíntese , Proteínas Reguladoras de Apoptose , Proteínas de Ligação ao Cálcio , Carcinoma Hepatocelular/metabolismo , Proteínas de Transporte/biossíntese , Moléculas de Adesão Celular , Análise por Conglomerados , Proteínas de Ligação a DNA , Fibronectinas/biossíntese , Regulação Neoplásica da Expressão Gênica , Genoma , Glicoproteínas/biossíntese , Glipicanas , Proteoglicanas de Heparan Sulfato/biossíntese , Hepatoblastoma/metabolismo , Humanos , Fator de Crescimento Insulin-Like II , Peptídeos e Proteínas de Sinalização Intercelular , Lectinas/biossíntese , Neoplasias Hepáticas/metabolismo , Proteínas de Membrana/biossíntese , Osteopontina , Proteínas/metabolismo , Proteínas de Ligação a RNA , Proteínas Repressoras/biossíntese , Sialoglicoproteínas/biossíntese , Fator de Crescimento Transformador beta/biossíntese , Fator de Crescimento Transformador beta1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...