Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mar Life Sci Technol ; 6(2): 183-197, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38827131

RESUMO

Histone modification and nucleosome assembly play important roles in chromatin-related processes. Histone chaperones form different complexes and coordinate histone transportation and assembly. Various histone chaperone complexes have been identified in different organisms. The ciliate protozoa (ciliates) have various chromatin structures and different nuclear morphology. However, histone chaperone components and functions of different subunits remain unclear in ciliates. Tetrahymema thermophila contains a transcriptionally active macronucleus (MAC) and a transcriptionally inactive micronucleus (MIC) which exhibit multiple replication and various chromatin remodeling progresses during vegetative growth and sexual developmental stages. Here, we found histone chaperone RebL1 not only localized evenly in the transcriptionally active MAC but also dynamically changed in the MIC during vegetative growth and sexual developmental stages. REBL1 knockdown inhibited cellular proliferation. The macronuclear morphology became bigger in growing mutants. The abnormal macronuclear structure also occurred in the starvation stage. Furthermore, micronuclear meiosis was disturbed during sexual development, leading to a failure to generate new gametic nuclei. RebL1 potentially interacted with various factors involved in histone-modifying complexes and chromatin remodeling complexes in different developmental stages. REBL1 knockdown affected expression levels of the genes involved in chromatin organization and transcription. Taken together, RebL1 plays a vital role in maintaining macronuclear structure stability and gametogenesis in T. thermophila. Supplementary Information: The online version contains supplementary material available at 10.1007/s42995-024-00219-z.

2.
Cells ; 12(24)2023 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-38132148

RESUMO

Histones and DNA associate to form the nucleosomes of eukaryotic chromatin. Chromatin assembly factor 1 (CAF-1) complex and histone regulatory protein A (HIRA) complex mediate replication-couple (RC) and replication-independent (RI) nucleosome assembly, respectively. CHAF1B and HIRA share a similar domain but play different roles in nucleosome assembly by binding to the different interactors. At present, there is limited understanding for the similarities and differences in their respective functions. Tetrahymena thermophila contains transcriptionally active polyploid macronuclei (MAC) and transcriptionally silent diploid micronuclei (MIC). Here, the distribution patterns of Caf1b and Hir1 exhibited both similarities and distinctions. Both proteins localized to the MAC and MIC during growth, and to the MIC during conjugation. However, Hir1 exhibited additional signaling on parental MAC and new MAC during sexual reproduction and displayed a punctate signal on developing anlagen. Caf1b and Hir1 only co-localized in the MIC with Pcna1 during conjugation. Knockdown of CAF1B impeded cellular growth and arrested sexual reproductive development. Loss of HIR1 led to MIC chromosome defects and aborted sexual development. Co-interference of CAF1B and HIR1 led to a more severe phenotype. Moreover, CAF1B knockdown led to the up-regulation of HIR1 expression, while knockdown of HIR1 also led to an increase in CAF1B expression. Furthermore, Caf1b and Hir1 interacted with different interactors. These results showed that CAF-1 and Hir1 have independent and complementary functions for chromatin assembly in T. thermophila.


Assuntos
Nucleossomos , Tetrahymena thermophila , Nucleossomos/metabolismo , Tetrahymena thermophila/genética , Tetrahymena thermophila/metabolismo , Montagem e Desmontagem da Cromatina , Cromatina/metabolismo , Histonas/metabolismo
3.
Materials (Basel) ; 12(11)2019 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-31163592

RESUMO

This paper presents an experimental study on the dynamic compressive behaviour of polypropylene (PP) fibre reinforced concrete under various strain rates using split Hopkinson pressure bar (SHPB) equipment. The effects of PP fibre content and strain rate on the dynamic compressive stress-strain relationship and failure patterns were estimated. The results indicated that the addition of PP fibre enhanced the dynamic compressive properties of concrete mixtures although it resulted in a significant reduction in workability and a slight decrease in static compressive strength. Considering the workability, static compressive strength and dynamic compressive behaviour, the optimal PP fibre content was found to be 0.9 kg/m3 as the mixture exhibited the highest increase in dynamic compressive strength of 5.6%, 40.3% in fracture energy absorption and 11.1% in total energy absorption; further, it showed the least reduction (only 5.8%) in static compressive strength among all mixtures compared to the reference mixture without fibre. For all mixtures, the dynamic compressive properties, energy absorption capacity, strain at peak stress, ultimate strain and dynamic increase factor (DIF) were significantly influenced by strain rate, i.e., strain rate effect. When the strain rate was relatively low, PP fibres were effective in controlling the cracking, and the dynamic compressive properties of PP fibre reinforced mixtures were improved accordingly.

4.
Materials (Basel) ; 11(9)2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-30200409

RESUMO

A heuristic approach to design lightweight metamaterials with novel configurations and arbitrary Poisson's ratio is studied by using the functional element topology optimization (FETO) method. Mathematical model of the optimization problem is established, where the minimization of the mass is set as the objective, then a series of metamaterials with Poisson's ratio ranging from -1.0 to +1.0 are designed by solving this model. The deformation resistance and vibration reduction performance of the novel metamaterials and conventional honeycomb are compared by numerical simulations. Specific stiffness analysis shows that the novel metamaterials are 5.6 to 21.0 times more resistant to deformation than that of the honeycomb, and frequency response shows about 60% improvement in vibration reduction performance. Finally, the lightweight effects of the novel metamaterials on deformation resistance and vibration reduction performance are analyzed, and further analysis reflects that the lightweight effects increase with the increase of the absolute value of the Poisson's ratio.

5.
Materials (Basel) ; 11(7)2018 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-29941823

RESUMO

Unidirectional, bidirectional and tridirectional Buckling-based Negative Stiffness (BNS) lattice metamaterials are designed by adding prefabricated curved beams into multidimensional rigid frames. Finite Element Analysis models are built, and their mechanical performance is investigated and discussed. First, geometric parameters of the curved beam were systematically studied with numerical analyses and the results were validated by theoretical solutions. Next, within unidirectional designs of different layer numbers, the basic properties of multilayer BNS metamaterials were revealed via quasi-static compressions. Then, the bidirectional and tridirectional designs were loaded on orthogonal axes to research both the quasi-static and dynamic behaviors. For dynamic analysis conditions, simulation scenarios of different impact velocities were implemented and compared. The results demonstrate that the proposed numerical analysis step has accurately predicted the force-displacement relations of both the curved beam and multilayer designs and the relations can be tuned via different geometric parameters. Moreover, the macroscopic performance of the metamaterials is sensitive to the rigidity of supporting frames. The shock force during impact is reduced down below the buckling thresholds of metamaterial designs and sharp impact damage is avoided. The presented metamaterials are able to undergo multiaxial stress conditions while retaining the negative stiffness effect and energy-absorbing nature and possess abundant freedom of parametric design, which is potentially useful in shock and vibration engineering.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...