Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Nutr ; 11: 1403200, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38826585

RESUMO

Introduction: Germinated brown rice is a functional food with a promising potential for alleviating metabolic diseases. This study aimed to explore the hypolipidemic effects of autoclaving-treated germinated brown rice (AGBR) and the underlying mechanisms involving gut microbiota. Methods: Dietary intervention with AGBR or polished rice (PR) was implemented in patients with hyperlipidemia for 3 months, and blood lipids were analyzed. Nutritional characteristics of AGBR and PR were measured and compared. Additionally, 16S rDNA sequencing was performed to reveal the differences in gut microbiota between the AGBR and PR groups. Results: AGBR relieves hyperlipidemia in patients, as evidenced by reduced levels of triglycerides, total cholesterol, low-density lipoprotein cholesterol, and apolipoprotein-B, and elevated levels of high-density lipoprotein cholesterol and apolipoprotein-A1. In terms of nutrition, AGBR had significantly higher concentrations of free amino acids (10/16 species), γ-aminobutyric acid, resistant starch, soluble dietary fiber, and flavonoids (11/13 species) than PR. In addition, higher microbial abundance, diversity, and uniformity were observed in the AGBR group than in the PR group. At the phylum level, AGBR reduced Firmicutes, Proteobacteria, Desulfobacterota, and Synergistota, and elevated Bacteroidota and Verrucomicrobiota. At the genus level, AGBR elevated Bacteroides, Faecalibacterium, Dialister, Prevotella, and Bifidobacterium, and reduced Escherichia-Shigella, Blautia, Romboutsia, and Turicibacter. Discussion: AGBR contributes to the remission of hyperlipidemia by modulating the gut microbiota.

2.
Food Funct ; 15(12): 6642-6656, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38814002

RESUMO

Objective: This study aimed to observe the effects of germinated brown rice and germinated black rice on blood lipid levels, blood glucose levels and lipid metabolism-related enzymes in T2DM patients with dyslipidaemia and to study their effects on the gut microbiome and short-chain fatty acids. Methods: According to the inclusion and exclusion criteria, 68 subjects were randomly divided into a germinated brown rice group, a germinated black rice group and a white rice group. At the end of the intervention, relevant anthropometric indices, blood biochemistry, and levels of adipokines and lipid metabolism-related enzymes were measured. Faecal samples were collected for 16S rDNA high-throughput sequencing and for an analysis of short-chain fatty acids. Results: After 3 months of intervention with germinated brown rice, germinated black rice or white rice, 21 people in each group completed the intervention as required. At the end of the intervention, the levels of total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) in the germinated brown rice group and germinated black rice group were significantly lower than those in the white rice group. The levels of adiponectin (ADPN) and lecithin cholesterol acyltransferase (LCAT) in the germinated brown rice group were significantly higher than those in the white rice group (P < 0.05). At the genus level, interventions with germinated brown rice and germinated black rice significantly increased the relative abundance of Megamonas, Muribaculaceae and Alloprevotella and significantly decreased the relative abundance of Veillonella (P < 0.05). After 3 months of intervention, a significant decrease in waist circumference was observed within the germinated brown rice group compared to that at baseline (P < 0.05). Conclusions: Compared with the consumption of white rice, the consumption of germinated brown rice and germinated black rice can effectively regulate the glucose and lipid metabolism of this population. In addition, interventions involving the use of germinated brown rice and germinated black rice may further improve intestinal diversity and abundance, increase the relative abundance of Megamonas and decrease the relative abundance of Veillonella.


Assuntos
Diabetes Mellitus Tipo 2 , Dislipidemias , Microbioma Gastrointestinal , Germinação , Oryza , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Glicemia/metabolismo , Glicemia/análise , Adulto , Metabolismo dos Lipídeos , Fezes/microbiologia
3.
Front Nutr ; 11: 1359813, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38585610

RESUMO

Perilla frutescens (L.) Britton is an annual herb plant of the Perilla genus in the Labiatae family, which is commonly utilized as an edible and medicinal resource. Polysaccharides are among the major components and essential bioactive compounds of P. frutescens, which exhibit a multitude of biological activities, including antioxidant, antitumor, anti-fatigue, immunoregulation, hepatoprotective, anti-inflammatory, and lipid-lowering effects. As a natural carbohydrate, P. frutescens polysaccharide has the potential to be utilized in the development of drugs and functional materials. In this paper, we provide an overview of progress made on the extraction, purification, structural characterization, and bioactivity of polysaccharides from different parts of P. frutescens. The challenges and opportunities for research are discussed, along with the potential development prospects and future areas of focus in the study of P. frutescens polysaccharides.

4.
Food Chem X ; 21: 101215, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38379797

RESUMO

This paper aims to overview the influence of different gels that including hydrocolloids and oleogel on techno-functional changes of dairy foods. The hydrocolloids are widely added to dairy products as stabilizers, emulsifiers, and gelling agents to enhance their texture, or improve sensory properties to meet consumer needs; and the newly developed oleogel, which despite less discussed in dairy foods, this article lists its application in different dairy products. The properties of different hydrocolloids were explained in detail, meanwhile, some common hydrocolloids such as pectin, sodium alginate, carrageenan along with the interaction between gel and proteins on techno-functional properties of dairy products were mainly discussed. What's more, the composition of oleogel and its influence on dairy foods were briefly summarized. The key issues have been revealed that the use of both hydrocolloids and oleogel has great potential to be the future trend to improve the quality of dairy foods effectively.

5.
Front Bioeng Biotechnol ; 9: 806788, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34976993

RESUMO

Tannases are a family of esterases that catalyze the hydrolysis of ester and depside bonds present in hydrolyzable tannins to release gallic acid. Here, a novel tannase from Lachnospiraceae bacterium (TanALb) was characterized. The recombinant TanALb exhibited maximal activity at pH 7.0 and 50°C, and it maintained more than 70% relative activity from 30°C to 55°C. The activity of TanALb was enhanced by Mg2+ and Ca2+, and was dramatically reduced by Cu2+ and Mn2+. TanALb is capable of degrading esters of phenolic acids with long-chain alcohols, such as lauryl gallate as well as tannic acid. The Km value and catalytic efficiency (k cat /Km) of TanALb toward five substrates showed that tannic acid (TA) was the favorite substrate. Homology modeling and structural analysis indicated that TanALb contains an insertion loop (residues 341-450). Based on the moleculer docking and molecular dynamics (MD) simulation, this loop was observed as a flap-like lid to interact with bulk substrates such as tannic acid. TanALb is a novel bacterial tannase, and the characteristics of this enzyme make it potentially interesting for industrial use.

6.
Food Sci Nutr ; 8(3): 1709-1717, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32180978

RESUMO

Germinated brown rice (GBR) is a popular functional food containing considerable amounts of beneficial nutrients and bioactive compounds. Here, autoclaving at 115°C for 20 min was employed to process GBR (AGBR) to evaluate the effect of autoclaving on the nutritional and health function of GBR in microstructure, taste value, aroma, as well as the physiological ingredients. The results showed that autoclaving treatment influenced the starch gelatinization and aroma to improve the taste of cooked AGBR. Autoclaving treatment significantly increased the gamma-aminobutyric acid (GABA) and ferulic acid levels of AGBR (p < .05). In addition, consuming AGBR for 1 month significantly decreased the fasting plasma glucose (FPG), 0.5, 1, and 2 hr postprandial plasma glucose (PPG), triglyceride (TG), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-c), and low-density lipoprotein cholesterol (LDL-c) in metabolic syndrome (MS) patients (p < .05). Therefore, autoclaving treatment, as a promising processing strategy, may both improve the sensory attributes and the nutrition of GBR.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...